Сопротивление паропроницанию материалов и тонких слоев пароизоляции
Проектирование бань | Totalarch
Вы здесь
Паропроницаемость материалов
Паропроницаемостью по СП 23-101-2000 называется свойство материала пропускать влагу воздуха под действием перепада (разницы) парциальных давлений водяного пара в воздухе на внутренней и наружной поверхности слоя материала. Давления воздуха с обеих сторон слоя материала при этом одинаковые. Плотность стационарного потока водяного пара G п (мг/м² час), проходящего в изотермических условиях через слой материала толщиной 5(м) в направлении уменьшения абсолютной влажности воздуха равна G п = μ∆р п /δ, где μ (мг/м час Па) — коэффициент паропроницаемости, ∆р п (Па) — разность парциальных давлений водяного пара в воздухе у противоположных поверхностей слоя материала. Величина, обратная μ, называется сопротивлением паропроницанию R п =δ/μ и относится не к материалу, а слою материала толщиной δ. В отличие от воздухопроницаемости, термин «паропроницаемость» — это абстрактное свойство, а не конкретная величина потока водяного пара, что является терминологическим недочётом СП 23-101-2000. Правильней было бы называть паропроницаемостью величину плотности стационарного потока водяного пара G п через слой материала.
Если при наличии перепадов давления воздуха пространственный перенос водяных паров осуществляется массовыми движениями всего воздуха целиком вместе с парами воды (ветром) и оценивается с помощью понятия воздухопроницания, то при отсутствии перепадов давления воздуха массовых перемещений воздуха нет, и пространственный перенос водяных паров происходит путем хаотического движения молекул воды в неподвижном воздухе в сквозных каналах в пористом материале, то есть не конвективно, а диффузионно. Воздух представляет собой смесь молекул азота, кислорода, углекислого газа, аргона, воды и других компонентов с примерно одинаковыми средними скоростями, равными скорости звука. Поэтому все молекулы воздуха диффундируют (хаотически перемещаются из одной зоны газа в другую, непрерывно соударяясь с другими молекулами) примерно с одинаковыми скоростями. Так что скорость перемещения молекул воды сопоставима со скоростью перемещения молекул и азота, и кислорода. Вследствие этого европейский стандарт EN12086 использует вместо понятия коэффициента паропроницаемости μ более точный термин коэффициента диффузии (который численно равен 1,39μ) или коэффициента сопротивления диффузии 0,72/μ.
Сущность понятия паропроницаемости поясняет метод определения численных значений коэффициента паропроницаемости ГОСТ 25898-83. Стеклянную чашку с дистиллированной водой герметично накрывают испытуемым листовым материалом, взвешивают и устанавливают в герметичный шкаф, расположенный в термостатированном помещении (рис. 20). В шкаф закладывают осушитель воздуха (концентрированный раствор азотнокислого магния, обеспечивающий относительную влажность воздуха 54%) и приборы для контроля температуры и относительной влажности воздуха (желательны ведущие непрерывную запись термограф и гигрограф). После недельной выдержки чашку с водой взвешивают, и по количеству испарившейся (прошедшей через испытуемый материал) воды рассчитывают коэффициент паропроницаемости. При расчетах учитывается, что паропроницаемость самого воздуха (между поверхностью воды и образцом) равна 1 мг/м час Па. Парциальные давления водяных паров принимают равными р п = ϕр 0 , где р 0 — давление насыщенного пара при заданной температуре, ϕ — относительная влажность воздуха, равная единице (100%) внутри чашки над водой и 0,54 (54%) в шкафу над материалом.
Данные по паропроницаемости приведены в таблицах 4 и 5. Напомним, что парциальное давление паров воды является отношением числа молекул воды в воздухе к общему числу молекул (азота, кислорода, углекислого газа, воды и т. п.) в воздухе, т. е. относительным счётным количеством молекул воды в воздухе. Приведённые значения коэффициента теплоусвоения (при периоде 24 часа) материала в конструкции вычислены по формуле s=0,27(λp 0 C 0 ) 0,5 , где λ, р 0 и С 0 — табличные значения коэффициента теплопроводности, плотности и удельной теплоёмкости.
Таблица 5: Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции (приложение 11 к СНиП II-3-79*)
Пересчёт давлений из атмосфер (атм) в паскали (Па) и килопаскали (1кПа = 1000 Па) ведётся с учётом соотношения 1 атм = 100 000 Па. В банной практике значительно более удобно характеризовать содержание водяного пара в воздухе понятием абсолютной влажности воздуха (равной массе влаги в 1 м³ воздуха), поскольку оно наглядно показывает, сколько воды надо поддать в каменку (или испарить в парогенераторе). Абсолютная влажность воздуха равна произведению значений относительной влажности и плотности насыщенного пара:
Поскольку характерный уровень абсолютной влажности воздуха в банях 0,05 кг/м³ соответствует парциальному давлению водяных паров 7300 Па, а характерные значения парциальных давлений водяных паров в атмосфере (на улице) составляют при 50%-ной относительной влажности воздуха 1200 Па летом (20°С) и 130 Па зимой (-10°С), то характерные перепады парциальных давлений водяных паров на стенах бань достигают значений 6000-7000 Па. Отсюда следует, что типичные уровни потоков водяных паров через брусовые стены бань толщиной 10 см составляют в условиях полного штиля (3-4) г/м²час, а в расчёте на 20 м² стен — (60-80) г/час. Это не столь уж и много, если учесть, что в бане объёмом 10 м³ содержится около 500 г водяных паров. Во всяком случае при воздухопроницаемости стен во время сильных (10 м/сек) порывов ветра (1-5-10) кг/м² час перенос водяных паров ветром через брусовые стены может достигать (50-500) г/м² час. Всё это означает, что паропроницаемость брусовых стен и потолков бань не снижает существенно влажность древесины, намоченной горячей росой при поддачах, так что потолок в паровой бане и в самом деле может намокать и работать как парогенератор, преимущественно увлажняющий только воздух в бане, но лишь при тщательной защите потолка от порывов ветра.
Если же баня холодная, то перепады давлений водяных паров на стенах бани не могут превышать летом 1000 Па (при 100%-ной влажности внутри стены и 60%-ной влажности воздуха на улице при 20°С). Поэтому характерная скорость высушивания брусовых стен летом за счёт паропроницания находится на уровне 0,5 г/м² час, а за счёт воздухопроницаемости при легком ветре 1 м/сек — (0,2-2) г/м² час и при порывах ветра 10 м/сек — (20- 200) г/м² час (хотя внутри стен движения масс воздуха происходят со скоростями менее 1 мм/сек). Ясно, что процессы паропроницания становятся существенными в балансе влаги лишь при хорошей ветрозащите стен здания. Таким образом, для быстрых просушиваний стен здания (например, после аварийных протечек кровли) лучше предусматривать внутри стен продухи (каналы вентилируемого фасада). Так, если в закрытой бане намочить внутреннюю поверхность брусовой стены водой в количестве 1 кг/м², то такая стена, пропуская через себя водяные пары наружу, просохнет на ветру за несколько суток, но если брусовая стена оштукатурена снаружи (то есть ветроизолирована), то она просохнет без протопки лишь за несколько месяцев. К счастью, древесина очень медленно пропитывается водой, поэтому капли воды на стене не успевают проникнуть глубоко в древесину, и столь долгие просушки стен не характерны. Но если венец сруба лежит в луже на цоколе или на мокрой (и даже влажной) земле неделями, то последующая просушка возможна только ветром через щели.
В быту (и даже в профессиональном строительстве) именно в области пароизоляции имеется наибольшее количество недоразумений, порой самых неожиданных. Так, например, часто считают, что горячий банный воздух якобы «сушит» холодный пол, а холодный промозглый воздух из подполья «впитывается» и якобы«увлажняет» пол, хотя все происходит как раз наоборот. Или, например, всерьёз полагают, что теплоизоляция (стекловата, керамзит и т. п.) «всасывает» влагу и тем самым «высушивает» стены, не задаваясь вопросом о дальнейшей судьбе этой якобы бесконечно «всасываемой» влаги. Подобные житейские соображения и образы опровергать в быту бесполезно, хотя бы потому, что в общенародной среде никто всерьёз (а тем более во время «банного трёпа») природой явления паропроницаемости не интересуется. Но если дачник, имея соответствующее техническое образование, на самом деле хочет разобраться, как и откуда проникают водяные пары в стены и как оттуда выходят, то ему придётся, прежде всего, оценить реальное содержание влаги в воздухе во всех зонах интереса (внутри и вне бани), причём объективно выраженное в массовых единицах или парциальном давлении, а затем, пользуясь приведёнными данными по воздухопроницаемости и паропроницаемости определить, как и куда перемещаются потоки водяного пара и могут ли они конденсироваться в тех или иных зонах с учётом реальных температур. С этими вопросами мы и будем знакомиться в следующих разделах. Подчеркнём при этом, что для ориентировочных оценок можно пользоваться следующими характерными величинами перепадов давления:
— перепады давлений воздуха (для оценки переноса паров воды вместе с массами воздуха — ветром) составляют от (1-10) Па (для одноэтажных бань или слабых ветров 1 м/сек), (10-100) Па (для многоэтажных зданий или умеренных ветров 10 м/сек), более 700 Па при ураганах;
— перепады парциальных давлений водяных паров в воздухе от 1000Па (в жилых помещениях) до 10000Па (в банях).
В заключение отметим, что в народе часто путают понятия гигроскопичности и паропроницаемости, хотя они имеют совершенно разный физический смысл. Гигроскопические («дышащие») стены впитывают водяные пары из воздуха, превращая пары воды в компактную воду в очень мелких капиллярах (порах), несмотря на то, что парциальное давление паров воды может быть ниже давления насыщенных паров. Паропроницаемые же стены просто пропускают через себя пары воды без конденсации, но если в какой-то части стены имеется холодная зона, в которой парциальное давление водяных паров становится выше давления насыщенных паров, то конденсация, конечно же, возможна точно также, как и на любой поверхности. При этом паропроницаемые гигроскопические стены увлажняются сильнее, чем паропроницаемые негигроскопические.
Источник: Дачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008
Сопротивление паропроницанию листовых материалов и тонких слоев пароизоляции
Приложение Н
(справочное)
Пример расчета приведенного сопротивления теплопередаче фасада жилого здания с использованием расчетов температурных полей
Н.1 Описание конструкции, выбранной для расчета
Стена с теплоизоляционной фасадной системой с тонким штукатурным слоем. Фасадная система монтируется на стену здания, выполненного с каркасом из монолитного железобетона. Наружные стены выполняются из кирпичной кладки из полнотелого кирпича толщиной 250 мм (в один кирпич). Толщина теплоизоляционного слоя фасада из каменной ваты составляет 150 мм. Высота этажа от пола до пола 3300 мм. Толщина железобетонного перекрытия 200 мм. Под перекрытием проходит железобетонный ригель высотой 400 мм. Вертикальный разрез стены с фасадом и с оконными проемами схематично представлен на рисунке Н.1. Состав стены (изнутри наружу) представлен в таблице Н.1.
Рисунок Н.1 — Схематическое изображение вертикального разреза стены с теплоизоляционным фасадом в зоне расположения светопроемов с оконными блоками
Н.2 Перечисление элементов, составляющих ограждающую конструкцию:
железобетонный ригель с участком перекрытия, утепленный слоем минераловатной плиты, закрытой тонким слоем штукатурки — плоский элемент 1;
кирпичная кладка, утепленная слоем минераловатной плиты, закрытой тонким слоем штукатурки — плоский элемент 2;
оконный откос, образованный железобетонным ригелем, утепленным слоем минераловатной плиты, закрытой тонким слоем штукатурки — линейный элемент 1;
оконный откос, образованный кирпичной кладкой, утепленной слоем минераловатной плиты, закрытой тонким слоем штукатурки — линейный элемент 2;
дюбель со стальным сердечником, прикрепляющий слой минераловатной плиты к железобетонному ригелю — точечный элемент 1;
дюбель со стальным сердечником, прикрепляющий слой минераловатной плиты к кирпичной кладке — точечный элемент 2.
Таким образом, в рассматриваемом фрагменте ограждающей конструкции два вида плоских, два вида линейных и два вида точечных элементов.
Н.3 Геометрические характеристики проекций элементов
Весь фасад здания, включая светопроемы, имеет общую площадь 2740 м 2 . Фасад содержит следующие светопроемы: 2400×2000 мм — 80 шт., 1200×2000 мм — 80 шт., 1200×1200 мм — 24 шт. Суммарная площадь светопроемов 611 м 2 .
Площадь поверхности фрагмента ограждающей конструкции для расчета составляет: А = 2740 — 611 = 2129 м 2 ;
суммарная протяженность торцов перекрытий, а также ригелей на фасаде составляет 822 м. Таким образом, площадь стены с основанием из монолитного железобетона (т.е. площадь проекции на поверхность фрагмента) составляет: А1 = 822(0,2 + 0,4) = 493 м 2 . Доля этой площади от общей площади фрагмента ограждающей конструкции равна
площадь стены с основанием из кирпичной кладки: А2 = 2129 — 493 = 1636 м 2 . Доля этой площади от общей площади фрагмента ограждающей конструкции равна
общая длина проекции оконного откоса, образованного железобетонным ригелем, утепленным слоем минераловатной плиты, определяется по экспликации оконных проемов и равна: L1 = 2,4 ∙ 80 + 1,2 ∙ 80 + 1,2 ∙ 24 = 317 м. Длина проекции этих откосов, приходящаяся на 1 м 2 площади фрагмента равна 0150S10-08580
общая длина проекции оконного откоса, образованного кирпичной кладкой, утепленной слоем минераловатной плиты, определяется по экспликации оконных проемов и равна: L2 = (2,4 + 2 ∙ 2,0) ∙ 80 + (1,2 + 2 ∙ 2,0) ∙ 80 + (1,2 + 2 ∙ 1,2) ∙ 24 = 1014 м. Длина проекции этих откосов, приходящаяся на 1 м 2 площади фрагмента равна 0150S10-08580
общее количество тарельчатых дюбелей на железобетонном ригеле и торце перекрытия равно 3944 шт. Количество таких дюбелей, приходящихся на 1 м 2 фрагмента равно: 0150S10-08580
общее количество тарельчатых дюбелей на кирпичной кладке равно 13088 шт. Количество таких дюбелей, приходящихся на 1 м 2 фрагмента равно: 0150S10-08580
Н.4 Расчет удельных потерь теплоты, обусловленных элементами.
Все температурные поля рассчитываются для температуры наружного воздуха минус 28 °С и температуры внутреннего воздуха 20 °С.
Для плоского элемента 1 удельные потери теплоты определяются по формулам (Е.6), (Е.3):
Для плоского элемента 2 удельные потери теплоты определяются аналогично:
Для линейного элемента 1 рассчитывается температурное поле узла конструкции, содержащего элемент. Определяется величина Вт/м, — потери теплоты через участок фрагмента с данным линейным элементом, приходящиеся на 1 пог. м.
Двумерное температурное поле представлено на рисунке Н.2.
Расчетный участок имеет размеры 426×800 мм. Площадь стены, вошедшей в расчетный участок, S1,1 = 0,532 м 2 .
Потери теплоты через стену с оконным откосом, вошедшую в участок, по результатам расчета температурного поля равны
Потери теплоты через участок однородной стены той же площади определяются по формуле (Е.10):
Дополнительные потери теплоты через линейный элемент 1 составляют:
= 12,0 — 7,0 = 5,0 Вт/м.
Удельные линейные потери теплоты через линейный элемент 1 определяются по формуле (Е.8):
Расчеты удельных характеристик других элементов проводятся аналогично и сведены в таблицу Н.2.
Рисунок Н.4 — Температурное поле узла конструкции, содержащего точечный элемент 1
Рисунок Н.5 — Температурное поле узла конструкции, содержащего точечный элемент 2
Таким образом, определены все удельные потери теплоты, обусловленные всеми элементами в рассматриваемом фрагменте ограждающей конструкции.
Н.5 Расчет приведенного сопротивления теплопередаче стены.
СОПРОТИВЛЕНИЕ ПАРОПРОНИЦАНИЮ ЛИСТОВЫХ МАТЕРИАЛОВ И ТОНКИХ СЛОЕВ ПАРОИЗОЛЯЦИИ
ВНИМАНИЕ! САЙТ ЛЕКЦИИ.ОРГ проводит недельный опрос. ПРИМИТЕ УЧАСТИЕ. ВСЕГО 1 МИНУТА.
ПРИЛОЖЕНИЕ Щ
ИЗОЛИНИИ СОРБЦИОННОГО ВЛАГОСОДЕРЖАНИЯ КЕРАМЗИТОБЕТОНА, СОДЕРЖАЩЕГО ХЛОРИДЫ НАТРИЯ, КАЛИЯ И МАГНИЯ
Рисунок Щ.1 — Изолинии сорбционного влагосодержания керамзитобетона r = 1200 кг/м 3 , содержащего хлорид натрия, при изменении относительной влажности воздуха jа, %, и массового солесодержания С, %
Рисунок Щ.2 — Изолинии сорбционного влагосодержания керамзитобетона r = 1200 кг/м 3 , содержащего хлорид калия, при изменении относительной влажности воздуха ja, %, и массового солесодержания С, %
Рисунок Щ.3 — Изолинии сорбционного влагосодержания керамзитобетона r = 1200 кг/м 3 , содержащего хлорид магния, при изменении относительной влажности воздуха ja, %, и массового солесодержания С, %
Рисунок Щ.4 — Изолинии сорбционного влагосодержания керамзитобетона r = 1200 кг/м 3 , содержащего NaCl — 60 %, КС1 — 30 %, MgCl2 — 10 %, при изменении относительной влажности воздуха ja, %, и массового солесодержания С,%, встенах флотофабрик
Рисунок Щ.5 — Изолинии сорбционного влагосодержания керамзитобетона r = 1200 кг/м 3 , содержащего NaCl — 50 %, КС1 — 30 %, MgCl2 — 10 %, при изменении относительной влажности воздуха jа, %, и массового солесодержания С, %,в стенах цехов дробления руды
Рисунок Щ.6 — Изолинии сорбционного влагосодержания керамзитобетона r = 1200 кг/м 3 , содержащего NaCl — 30 %, КСl — 60 %, MgCl2 — 10 %, при изменении относительной влажности воздуха ja, %, и массового солесодержания С, %, в стенах цехов сушки
ПРИЛОЖЕНИЕ Э
ПРИМЕР РАСЧЕТА СОПРОТИВЛЕНИЯ ПАРОПРОНИЦАНИЮ
Рассчитать сопротивление паропроницанию наружной многослойной стены из железобетона, утеплителя и кирпичной облицовки жилого здания в Москве. Проверить соответствие сопротивления паропроницанию стены требованиям СНиП 23-02, рассчитать распределение парциального давления водяного пара по толще стены и возможность образования конденсата в толще стены.
Исходные данные
Расчетная температура tint,°C, и относительная влажность внутреннего воздуха jint,%:для жилых помещений tint = 20 °С (согласно ГОСТ 30494), jint = 55 % (согласно СНиП 23-02).
Расчетная зимняя температура text,°C, и относительная влажность наружного воздуха jext %, определяются следующим образом: text и jехt принимаются соответственно равными средней месячной температуре и средней относительной влажности наиболее холодного месяца. Для Москвы наиболее холодный месяц январь и согласно таблице 3* СНиП 23-01 text = -10,2 °С, и согласно таблице 1* СНиП 23-01 jext = 84 %.
Влажностный режим жилых помещений — нормальный; зона влажности для Москвы — нормальная, тогда условия эксплуатации ограждающих конструкций определяют по параметру Б (согласно СНиП 23-02). Расчетные теплотехнические показатели материалов приняты по параметру Б приложения Д настоящего Свода правил.
Наружная многослойная стена жилого дома состоит из следующих слоев, считая от внутренней поверхности:
1 — гипсовая штукатурка толщиной 5 мм, плотностью r = 1000 кг/м 3 с окраской внутренней поверхности двумя слоями масляной краски, расчетные коэффициенты теплопроводности lБ = 0,35 Вт/(м×°С), паропроницаемости m = 0,11 мг/(м×ч×Па);
2 — железобетон толщиной 100 мм, плотностью r = 2500 кг/м 3 , lБ = 2,04 Вт/(м×°С), m = 0,03 мг/(м×ч×Па);
3 — утеплитель Styrofoam 1B А фирмы «ДАУ ЮРОП ГмбХ» толщиной 100 мм, плотностью r = 28 кг/м 3 , lБ = 0,031 Вт/(м×°С), m = 0,006 мг/(м×ч×Па);
4 — кирпичная облицовка из сплошного глиняного обыкновенного кирпича толщиной 120 мм,
r = 1800 кг/м 3 , lБ = 0,81 Вт/(м×°С), m = 0,11 мг/(м×ч×Па);
5 — штукатурка из поризованного гипсо-перлитового раствора толщиной 8 мм, r = 500 кг/м 3 , lБ = 0,19 Вт/(м×°С), m = 0,43 мг/(м×ч×Па).
Порядок расчета
Сопротивление теплопередаче ограждающей конструкции равно
Ro = 1/8,7 + 0,005/0,35 + 0,1/2,04 + 0,1/0,031 + 0,12/0,81 + 0,008/0,19 + 1/23 = 3,638 (м 2 ×°С)/Вт.
Согласно СНиП 23-02 (п. 9.1, примечание 3) плоскость возможной конденсации в многослойной конструкции совпадает с наружной поверхностью утеплителя.
Сопротивление паропроницанию Rvp,м 2 ×ч×Па/мг, ограждающей конструкции (в пределах от внутренней поверхности до плоскости возможной конденсации) должно быть не менее нормируемых сопротивлений паропроницанию, определяемых по формулам (16) и (17) СНиП 23-02, приведенных ниже для удобства изложения:
где eint — парциальное давление водяного пара внутреннего воздуха, Па, при расчетной температуре и относительной влажности этого воздуха, определяемое по формуле
Eint — парциальное давление насыщенного водяного пара, Па, при температуре tint принимается по приложению С настоящего Свода правил: при tint = 20 °С Eint = 2338 Па. Тогда при
Е — парциальное давление водяного пара, Па, в плоскости возможной конденсации за годовой период эксплуатации, определяемое по формуле
E1, Е2, Е3 — парциальные давления водяного пара, Па, принимаемые по температуре ti, в плоскости возможной конденсации, определяемой при средней температуре наружного воздуха соответственно зимнего, весенне-осеннего и летнего периодов;
z1, z2, z3, — продолжительность, мес, соответственно зимнего, весенне-осеннего и летнего периодов, определяемая с учетом следующих условий:
а) к зимнему периоду относятся месяцы со средними температурами наружного воздуха ниже минус 5 °С;
б) к весенне-осеннему периоду относятся месяцы со средними температурами наружного воздуха от минус 5 до плюс 5 °С;
в) к летнему периоду относятся месяцы со средними температурами наружного воздуха выше плюс 5 °С.
Продолжительность периодов и их средняя температура определяются по таблице 3* СНиП 23-01, а значения температур в плоскости возможной конденсации ti, соответствующие этим периодам, по формуле (74) настоящего Свода правил
где tint — расчетная температура внутреннего воздуха °С, принимаемая для жилого здания в Москве равной 20 °С;
ti — расчетная температура наружного воздуха i-го периода, °С, принимаемая равной средней температуре соответствующего периода;
Rsi — сопротивление теплопередаче внутренней поверхности ограждения, равное Rsi = 1/aint = 1/8,7 = 0,115 м 2 ×°С×Вт;
åR — термическое сопротивление слоя ограждения в пределах от внутренней поверхности до плоскости возможной конденсации;
Ro — сопротивление теплопередаче ограждения, определенное ранее равным
Определим термическое сопротивление слоя ограждения в пределах от внутренней поверхности до плоскости возможной конденсации
åR = 0,005/0,35 + 0,1/2,04 + 0,1/0,031 = = 3,289 (м 2 ×°С)/Вт.
Установим для периодов их продолжительность zi,сут, среднюю температуру ti, °С, согласно СНиП 23-01 и рассчитаем соответствующую температуру в плоскости возможной конденсации ti, °С, по формуле (Э.5) для климатических условий Москвы:
зима (январь, февраль, декабрь):
t1 = 20 -(20 + 8,9)(0,115 + 3,289)/3,638 = -7,04 °С;
весна — осень (март, апрель, октябрь, ноябрь):
t2 = 20 -(20 — 0,6)(0,115 + 3,289)/3,638 = 1,85 °С;
лето (май — сентябрь):
t3 = (11,9 + 16 + 18,1 + 16,3 + 10,7)/5 = 14,6 °С;
t3 = 20 — (20 — 14,6)(0,115 + 3,289)/3,638 = 14,95 °С.
По температурам (t1, t2, t3) для соответствующих периодов определяем по приложению С парциальные давления (E1, Е2, E3) водяного пара: Е1 = 337 Па, Е2= 698 Па, E3 = 1705 Па и по формуле (Э.4) определим парциальное давление водяного пара Е,Па, в плоскости возможной конденсации за годовой период эксплуатации ограждающей конструкции для соответствующих продолжительностей периодов z1, z2, z3.
Е = (337×3 + 698×4 + 1705×5)/12 = 1027 Па.
Сопротивление паропроницанию Rvp e ,м 2 ×ч×Па/мг, части ограждающей конструкции, расположенной между наружной поверхностью и плоскостью возможной конденсации, определяется по формуле (79).
Rvp e = 0,008/0,43 + 0,12/0,11 = 1,11 м 2 ×ч×Па/мг.
Среднее парциальное давление водяного пара наружного воздуха еехt,Па, за годовой период определяют по СНиП 23-01 (таблица 5а*)
еext = (280 + 290 + 390 + 620 + 910 + 1240 + 1470 + 1400 + 1040 + 700 + 500 + 360)/12 = 767 Па.
По формуле (16) СНиП 23-02 определяем нормируемое сопротивление паропроницанию из условия недопустимости накопления влаги за годовой период эксплуатации согласно СНиП 23-02 (п. 9.1a)
Rvp1 req = (1286 — 1027)×1,11/(1027 — 767) = 1,11 м 2 ×ч×Па/мг.
Для расчета нормируемого сопротивления паропроницанию Rvp2 req из условия ограничения влаги за период с отрицательными средними месячными температурами наружного воздуха берут определенную ранее продолжительность этого периода z,сут, среднюю температуру этого периода t,°C: z = 151 сут, t = — 6,6 °С.
Температуру t, °С, в плоскости возможной конденсации для этого периода определяют по формуле (80)
t = 20 -(20 + 6,6)×(0,115 + 3,289)/3,638 = -4,9 °С.
Парциальное давление водяного пара Е,Па, в плоскости возможной конденсации определяют по приложению С при t = — 4,89 °С равным Е = 405 Па.
Согласно СНиП 23-02 в многослойной ограждающей конструкции увлажняемым слоем является утеплитель, в данном примере Styrofoam плотностью rw = r = 28 кг/м 3 при толщине gw = 0,1 м. Предельно допустимое приращение расчетного массового отношения влаги в этом материале согласно СНиП 23-02 Dwаv = 25 %.
Средняя упругость водяного пара наружного воздуха периода месяцев с отрицательными средними месячными температурами, определенная ранее, равна e ext = 364 Па.
Коэффициент h определяется по формуле (20) СНиП 23-02.
h = 0,0024(405 — 364)151/1,11 = 13,39.
Определим Rvp2 req по формуле (17) СНиП 23-02
Rvp2 req = 0,0024×151(1286 — 405)/(28×0,1×25 + 13,39) = 3,83 м 2 ×ч×Па/мг.
При сравнении полученного значения Rvp снормируемым устанавливаем, что Rvp > Rvp2 req > Rvp1 req .
Следовательно, ограждающая конструкция удовлетворяет требованиям СНиП 23-02 в отношении сопротивления паропроницанию.
Имеет хорошую паропроницаемость что позволит. Сопротивление паропроницанию материалов и тонких слоев пароизоляции. Факторы, которые оказывают влияние на прочность
2. К сожалению аккумулирующую теплоемкость массива наружной стены мы теряем навсегда. Но здесь есть свой выигрыш:
А) нет необходимости тратить энергоресурсы на нагрев этих стен
Б) при включении даже самого маленького обогревателя в помещении почти сразу станет тепло.
3. В местах соединения стены и перекрытия „мостики холода” можно убрать, если утеплитель наносить частично и на плиты перекрытия с последующим декорированием этих примыканий.
4. Если Вы все еще верите в «дыхание стен», то ознакомьтесь, пожалуйста с ЭТОЙ статьей. Если нет, то тут очевидный вывод: теплоизоляционный материал должен очень плотно быть прижат к стене. Еще лучше, если утеплитель станет единым целым со стеной. Т.е. между утеплителем и стеной не будет никаких зазоров и щелей. Таким образом влага из помещения не сможет попасть в зону точки росы. Стена всегда будет оставаться сухой. Сезонные колебания температур без доступа влаги не будут оказывать негативного влияния на стены, что увеличит их долговечность.
Все эти задачи может решить только напыляемый пенополиуретан.
Обладая самым низким коэффициентом теплопроводности из всех существующих теплоизоляционных материалов, пенополиуретан займет минимум внутреннего пространства.
Способность пенополиуретана надежно прилипать к любым поверхностям позволяет легко нанести его на потолок для уменьшения «мостиков холода».
При нанесении на стены пенополиуретан, находясь некоторое время в жидком состоянии, заполняет все щели и микрополости. Вспениваясь и полимеризуясь непосредственно в точке нанесения пенополиуретан становится единым целым со стеной, перекрывая доступ разрушительной влаге.
ПАРОПРОНИЦАЕМОСТЬ СТЕН
Сторонники лжеконцепции «здорового дыхания стен» помимо греха против истины физических законов и осознанного введения в заблуждение проектировщиков, строителей и потребителей, исходя из меркантильного побуждения, сбыть свой товар какими угодно методами, наговаривают и возводят поклеп на теплоизоляционные материалы с низкой паропроницаемостью (пенополиуретан) или теплоизоляционный материал и вовсе паронепроницаемый (пеностекло).
Суть этой злостной инсинуации сводится к следующему. Вроде как, если не будет пресловутого «здорового дыхания стен», то в таком случае внутреннее помещение обязательно станет сырым, а стены будут сочиться влагой. Дабы развенчать эту выдумку давайте посмотрим более внимательно на те физические процессы, которые будут происходить в случае облицовки под штукатурный слой или использовании внутри кладки, например такого материала как пеностекло, паропроницаемость которого равна нулю.
Итак, из-за присущих пеностеклу теплоизоляционных и герметизирующих свойств наружный слой штукатурки или кладки придет в равновесное температурное и влажностное состояние с наружной атмосферой. Также и внутренний слой кладки войдет в определенный баланс с микроклиматом внутренних помещений. Процессы диффузии воды, как в наружном слое стены, так и во внутреннем; будут носить характер гармонической функции. Эта функция будет обуславливаться, для наружного слоя, суточными перепадами температур и влажности, а также сезонными изменениями.
Особенно интересно в этом отношении поведение внутреннего слоя стены. Фактически, внутренняя часть стены будет выступать в роли инерционного буфера, роль которого сглаживать резкие изменения влажности в помещении. В случае резкого увлажнения помещения, внутренняя часть стены будет адсорбировать излишнюю влагу, содержащуюся в воздухе, не давая влажности воздуха достичь предельного значения. В тоже время, при отсутствии выделения влаги в воздух в помещении, внутренняя часть стены начинает высыхать при этом, не давая воздуху «пересохнуть» и уподобится пустынному.
Как благоприятный результат подобной системы утепления с использованием пенополиуретана гармоника колебания влажности воздуха в помещении сглаживается и тем самым гарантирует стабильное значение (с незначительными флуктуациями) приемлемой для здорового микроклимата влажности. Физика данного процесса достаточно хорошо изучена развитыми строительными и архитектурными школами мира и для достижения подобного эффекта при использовании волоконных неорганических материалов в качестве утеплителя в закрытых системах утепления настоятельно рекомендуется наличие надежного паронипроницаемого слоя на внутренней стороне системы утепления. Вот вам и «здоровое дыхание стен»!
Таблица паропроницаемости — это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.
Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.
Таблица паропроницаемости указывается на следующие показатели:
- Тепловая проводимость — это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
- Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
- Тепловое усвоение — это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение — это степень поглощения поверхностями стен влаги.
- Тепловая устойчивость — это способность оградить конструкции от резких колебаний тепловых потоков.
Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости , так как она помогает эффективно сравнить разнообразные типы паропроницаемости.
С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой — разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.
Пароизоляция — это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.
Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции — это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.
Таблица паропроницаемости материалов.
Таблица паропроницаемости материалов — это строительные нормативы международных и отечественных стандартов паропроницаемости строительных материалов.