Astapro.ru

33 квадратных метра
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое предварительно напряженный железобетон

Что такое предварительно напряженный железобетон

Преднапряжение бетона для повышения его прочности — это современный способ повышения прочности бетонных конструкций. В этой статье мы перечислим преимущества и недостатки предварительно напряженного железобетона.

Бетон используется в различных видах строительства. Имя ‘предварительно’ не означает, что данный вид бетона был поставлен под напряжение, прежде чем строится этаж над ним. Однако, вместо выпучивания под давлением, ему удается стать сильнее, и он приобретает способность выдерживать гораздо большие напряжения, чем обычный бетон.

Но как это сделать. Каковы преимущества и недостатки предварительно напряженного железобетона? Давайте узнаем ответы на эти вопросы, которые помогут лучше это понять.

Что такое предварительно напряженный железобетон?

Бетон в своем обычном состоянии имеет чрезвычайно высокий уровень прочности на сжатие. Это дает возможность использовать его для создания структур, которые должны нести сжимающие нагрузки. Например, он используется для создания колонн и опор для поддержки различных сооружений в больших зданиях.

Однако, по сравнению с его прочностью на сжатие, бетон почти не имеет целостной прочности. Поэтому, если обычный бетон используется для строительства перекрытий, он будет прогибаться под давлением при сжатии на нее, и в конце концов трескается и осыпается. Для устранения этого недостатка, применяется метод преднапряжение. В своей самой основной форме, преднапряжение осуществляется следующим образом.

Ряд стальных тросов приводят в напряжение путем применения оттягивающей силы на их концах, и располагают в бетонный блок. Затем, жидкий бетон заливается в формы и твердеет, что вызывает склеивание между ним и стальными тросами внутри. После этого, кабели пытаются восстановить свою первоначальную форму, они тянут с ними и бетон, создавая компрессию. Это вызывает стресс во внутренних частицах бетона, укрепляя его и делая его отличным материалом для использования в конструкциях. Поскольку напряжения бетона производится до его использования, это называется предварительно напряженный бетон.

Преднапряженный бетон имеет большой объем прочности, как на сжатие, так и на растяжение. Он используется для построения длинных мостов, строительных плит и др.

Преимущества и недостатки предварительно напряженного железобетона

Преимущества

1) высокая прочность на растяжение и трещиностойкость

Обычная бетонная плита, если положить под напряжение, проседает вниз под давлением веса. В таком положении, верхняя часть плиты сжимается, а ее дно находится под напряжением. Поскольку бетон может выдерживать большие объемы сжатия верхняя части плиты способна выдерживать такую нагрузку. Однако, бетон слаб в отношении силы на растяжение. В нижней части плита начинает трескаться, пока вся плита не рухнет вниз.

Преднапряженный бетон имеет высокий запас прочности на растяжение, и поэтому способен нести большие нагрузки без образования трещин или провалов.

2) Ниже глубины

Благодаря своей высокой прочности, предварительно напряженных железобетонных можно использовать, чтобы построить структуры, имеющие значительно меньшую глубину, по сравнению с железобетонными конструкциями. Это имеет два основных преимущества. Если его используют для строительных плит, он не занимает много места, и становятся доступными дополнительное полезное пространство, особенно в многоэтажных зданиях. Второе преимущество более низких глубин структур является то, что они имеют меньший вес, и несущих колонн в зданиях тоже можно сделать меньше, что позволяет сэкономить на строительных затратах и усилиях.

3) Продолжительности

Преднапряженный бетон может быть использован для построения структур, имеющих более длительный срок по сравнению с железобетонными. При строительстве зданий, это означает, что меньшее количество столбцов будут необходимы для поддержки плит, а также расстояние между ними может быть значительно больше. Для мостов, использование преднапряженного бетона может позволить инженерам, построить длинный мост, который не провалится под нагрузкой.

4) быстрое и надежное строительство

Преднапряженные бетонные блоки изготавливаются в промышленности в нескольких стандартных формах и размерах. Они известны как сборные блоки. Поскольку они профессионально изготовлены, они имеют очень хорошее качество сборки, и в то же время они предоставляют всю силу преимущества сборного железобетона. Они могут напрямую доставляется на строительную площадку и использоваться для быстрого завершения строительных работ. Сооружения, построенные с помощью этих блоков, как известно, имеют лучшее качество, и более длительную эксплуатацию.

Недостатки

1) Большая сложность здания

Преднапряжение бетона на строительной площадке — это трудоемкий и сложный процесс. Нужно иметь глубокие знания о каждом шаге, который участвует вместе с полным знанием использованием различного оборудования. Сборные железобетонные конструкции производятся один раз, их трудно изменить, и, следовательно, сложность первоначального планирования тоже увеличивается. Кроме того, поскольку вероятность ошибки очень низка, большое внимание должно быть принято при построении.

2) Увеличение стоимости строительства

Преднапряженный бетон требует знаний и специального оборудования, которые могут быть дорогими. Даже стоимость железобетонных блоков существенно выше, чем усиленные блоки. В строительстве жилых зданий, в дополнительной прочности на растяжение, преднапряженный бетон может оказаться ненужным, так как простой железобетон значительно дешевле и достаточно прочный, чтобы выполнить все требования к нагрузке.

3) необходимость контроля качества и инспекции

Процедура, используемая для предварительного напряжения должна быть проверена и одобрена специалистами по контролю качества. Каждый поднапряженная конкретная структура должна проверяться, чтобы убедиться, что она была подвергнута соответствующему напряжению. Слишком много внимания тоже плохо, и это может привести к повреждению бетона, что делает его слабее.

Предварительно напряженные железобетонные конструкции обеспечивают превосходную прочность на растяжение по сравнению с нормальными и даже железобетонными, но они сложны в конструкции и более дорогостоящие. Для приложений с низким напряжением, таких как перекрытия зданий, использовать преднапряженный бетон — это непрактично. Следовательно, решение об использовании предварительно напряженного железобетона должно быть принято только если этого требует спецификация проекта.

Преднапряженные железобетонные конструкции

Железобетонные конструкции — основа современного строительства. Однако они имеют существенные изъяны, связанные, в первую очередь, с недостаточной нагрузочной способностью и образованием трещин в камне при эксплуатационных нагрузках. Усовершенствование технологии изготовления изделий из бетона и стальной арматуры привело к созданию преднапряженного железобетона, который обладает рядом преимуществ.

Определение

Предварительно напряженные железобетонные конструкции — строительные изделия, бетон которых на этапе создания принудительно получает начальную расчетную напряженность сжатия. Она создается за счет предварительного формирования напряжения растяжения в рабочей высокопрочной арматуре и обжатия ею бетона на тех участках, которым предстоит испытывать растяжение (прогиб) при эксплуатации. Сжимаясь, арматура не проскальзывает, так как сцеплена с материалом или удерживается анкерным закреплением арматуры на торцах изделий. Таким образом, напряжение растяжения, которое приобретает железобетонный состав с помощью армирования, уравновешивает напряженность заблаговременного обжатия камня.

Преимущества

Предварительно напряженный железобетон долгосрочно отодвигает время начала формирования расколов в изделиях, работающих на прогиб, сокращает глубину их раскрывания. Вместе с тем изделия приобретают повышенную жесткость, не снижая прочности.

Читать еще:  Сколько стоит обложить дом кирпичом калькулятор

Предварительно напряженным железобетонным балкам свойственно хорошо работать на сжатие и прогиб, имея одинаковую прочность по длине, что позволяет увеличивать ширину перекрываемых пролетов. В таких конструкциях уменьшаются размеры поперечного сечения, следовательно, сокращаются объем и вес комплектующих элементов (на 20 – 30%), а также расход цемента. Более рациональное использование свойств стали позволяет сокращать расход арматуры (стержневой и проволочной) до 50%, особенно из высокопрочных марок (A-IV и выше), имеющих значительный предел прочности. Химическая нейтральность бетона к стали способствует предохранению арматуры от коррозии. Вместе с тем повышенная трещиностойкость предохраняет напряженную арматуру от ржавления в сооружениях, которые находятся под постоянным давлением воды, иных жидкостей, газов.

Методы возведения зданий, используемые в строительстве каркаса, базируются на технологии предварительного напряжения конструкций из железобетона в процессе строительства.

Напряженная арматура, обжимающая бетон сборочных единиц, обеспечивает практичную их стыковку путем значительного сокращения расходования металла на стыках. Сборные и сборно-монолитные изделия из железобетонных напряженных конструкций могут состоять из стыкуемых частей с одинаковым поперечным сечением, которые по краям выполняются из ненапряженных облегченных (тяжелых) бетонов, а нагружаемый фрагмент — преднапряженный железобетон. Такая продукция имеет повышенную выносливость, компенсируя повторяющиеся динамические воздействия.

Данное свойство позволяет демпфировать изменения напряжений в бетоне и арматуре, вызываемые колебаниями внешних нагрузок. Повышенная сейсмическая стойкость зданий повышается за счет большой конструкционной устойчивости напряженного железобетона, обжимающего отдельные их фрагменты. Конструкция в предварительно напряженном виде обеспечивает большую безопасность, так как ее разрушению предшествует запредельный прогиб, сигнализирующий об исчерпании конструкцией прочности.

Недостатки

Состояние предварительного напряжения в материале достигается спецоборудованием, точными расчетами, трудоемким конструированием и затратным производством. Продукция требует бережного хранения, транспортировки и монтажа, которые не вызывают ее аварийного состояния еще до начала использования.

Сосредоточенные нагрузки могут способствовать возникновению продольных трещин, которые снижают несущую способность. Просчеты в проектировании и технологии производства могут вызывать полное разрушение создаваемого железобетонного изделия на стапеле. Предварительно напряженные конструкции требуют металлоемкой опалубки повышенной прочности, увеличенного расхода стали на закладные и арматуру.

Большие значения звуко– и теплопроводности требуют закладывания в тело камня компенсирующих материалов. Подобными железобетонными конструкциями обеспечивается более низкий порог огнестойкости (ввиду меньшей критической температуры нагрева преднапряженной арматурной стали) по сравнению с обычным железобетоном. На преднапряженную бетонную конструкцию критично воздействуют выщелачивание, растворы кислот и сульфатов, солей, приводящие к коррозии цементного камня, раскрытию трещин и коррозии арматуры. Это может приводить к резкому снижению несущей способности стали и внезапному хрупкому разрушению. Также к минусам стоит отнести значительный вес изделий.

Материалы для конструкций

Железобетон — многокомпонентный материал, основными составляющими которого являются бетон и стальная арматура. Параметры их качества определяются особыми требованиями при проектировании к элементам конструкций на месте применения.

Бетон

Предварительное напряжение в железобетоне обеспечивается применением тяжелых составов средней плотности от 2200 до 2500 кг/м3, которые имеют классы по прочности на осевое растяжение выше Bt0,8, по прочности от В20 и больше, марки по водонепроницаемости от W2 и выше, по морозостойкости от F50. Требования к продукции гарантируют бетону нормативную прочность не ниже установленной с вероятностью 0,95 (в 95% случаев). Смесь должна набрать возраст не меньше 28 суток до получения материалом предварительных напряжений. На ранних стадиях эксплуатации бетонный камень способен частично утерять напряженное качество за счет общего снижения напряженности стали (до 16%). Коэффициент надежности материала на растяжение и сжатие в предельных состояниях установлен для эксплуатационной пригодности не ниже 1,0.

Арматура

Стальная начинка должна оставаться напряженной в железобетонном изделии на всем интервале эксплуатации, выдерживая без вытяжения длительно приложенные нагрузки. В преднапряженных изделиях из железобетона используется высокопрочная сталь с незначительной текучестью, соответствующей параметрам ползучести бетона.

С целью компенсирования эксплуатационной потери некоторой величины преднапряжения при изготовлении ее значение устанавливают чуть выше, чем предусмотрено строительными требованиями для конструкционного элемента. В продукции применяют горячекатаную упрочненную, холоднодеформированную арматуру, арматурную проволоку (пучки, пакеты, пряди), канаты, сварные каркасы и пр. Поперечное сечение арматуры может быть гладким, периодическим, а укладка проволоки и канатов серповидной и кольцевой.

Сталь должна гарантированно соответствовать установленному классу относительно прочности по преднапряженному растяжению (текучесть металла должна находиться в пределах 0,2% относительного удлинения) с вероятностью от 0,95 и выше. Арматуре необходимо быть пластичной, хладостойкой, свариваемой и пр. Надежное сцепление с бетонной смесью обеспечивается формированием арматурой сложных пространственных поверхностей.

Области использования конструкций

Преднапряженные изделия используются, когда применение обычного железобетона нецелесообразно (перерасход материалов, рост веса и стоимости, невозможность обеспечить несущую прочность и пр.). Сферами их использования являются гражданское, промышленное, специальное и гидротехническое строительство. Объекты — каркасы и мосты с широкими пролетами, напорные трубопроводы, плотины, водонепроницаемые емкости и пр.

А также из них создают подпорные стены, ограждающие панели, лестничные марши, подкрановые балки, фундаменты, колонны, столбы ЛЭП, каркасы тоннелей, междуэтажные перекрытия и пр. Такая продукция незаменима и при возведении построек в условиях взрыво- и сейсмоопасности. Особенно эффективна она при формировании сборно-монолитных конструкций, когда отдельные преднапряженные сборные элементы соединяются в проектном положении арматурой так, что работают как одно целое.

Вывод

Преднапряженные изделия из железобетона имеют много достоинств. Их недостатки могут быть нивелированы качеством проектирования, производства и монтирования, способствующим длительной эксплуатации.

Понятие о предварительно напряженных железобетонных конструкциях

Основными достоинствами железобетона являются: высокая проч­ность, огнестойкость, долговечность, простота формообразования. Бетонная балка (рис. ниже), испытывающая при изгибе растяжение ниже нейтральной оси и сжатие выше нее, имеет низкую несущую способность вследствие слабого сопротивления бетона растяжению. При этом прочность бетона в сжатой зоне используется не полностью. В связи с этим неармированный бетон не рекомендуется применять в конструкциях, предназначенных для работы на изгиб или растяжение, так как размеры таких элементов были бы непомерно большими.

Бетонные конструкции применяют преимущественно при их работе на сжатие (стены, фундаменты, подпорные сооружения, ус­той и др.) и только иногда при работе на изгиб при малых растяги­вающих напряжениях, не превышающих предела прочности бето­на при растяжении.

Железобетонные конструкции, усиленные в растянутой зоне арматурой, обладают значительно более высокой несущей способ­ностью. Так, несущая способность железобетонной балки (рис. ниже) с уложенной внизу арматурой в 10-20 раз больше, чем несущая способность бетонной балки таких же размеров. При этом прочность бетона в сжатой зоне балки используется полностью.

Схемы работы элементов под нагрузкой

В качестве арматуры применяют стальные стержни, проволо­ки, прокатные профили, а также стекловолокно, синтетические ма­териалы, деревянные бруски, бамбуковые стволы.

Читать еще:  Монтаж гипсокартонных перегородок кнауф

Конструкции армируют не только при их работе на растяжение и изгиб, но и на сжатие (рис. выше). Поскольку сталь имеет высокое сопротивление растяжению и сжатию, включение ее в сжатые эле­менты значительно повышает их несущую способность. Совмест­ная работа таких различных по свойствам материалов, как бетон и сталь, обеспечивается следующими факторами:

  1. сцеплением арматуры с бетоном, возникающим при твердении бетонной смеси; благодаря сцеплению оба материала деформи­руются совместно;
  2. близкими по значению коэффициентами линейных температур­ных деформаций (для бетона 7·10 -6 -10·10 -6 1/град, для стали 12·10 -6 1/град), что исключает появление начальных напряже­ний в материалах и проскальзывание арматуры в бетоне при изменениях температуры до 100 °С;
  3. надежной защитой стали, заключенной в плотный бетон, от кор­розии, непосредственного действия огня и механических по­вреждений.

Особенностью железобетонных конструкций является возмож­ность образования трещин в растянутой зоне при действии внешних нагрузок. Раскрытие этих трещин во многих конструкциях в стадии эксплуатации невелико (0,1-0,4 мм) и не вызывает коррозии арма­туры или нарушения нормальной работы конструкции. Однако име­ются конструкции и сооружения, в которых по эксплуатационным условиям образование трещин недопустимо (например, напорные трубопроводы, лотки, резервуары и т. п.) или ширина раскрытия должна быть уменьшена. В этом случае те зоны элемента, в кото­рых под действием эксплуатационных нагрузок появляются растя­гивающие усилия, заранее (до приложения внешних нагрузок) под­вергают интенсивному обжатию путем предварительного натяже­ния арматуры. Такие конструкции называют предварительно напряженными. Предварительное обжатие конструкций выполня­ют в основном двумя способами: натяжением арматуры на упоры (до бетонирования) и на бетон (после бетонирования).

В первом случае перед бетонированием конструкции арматуру натягивают и закрепляют на упорах или торцах формы (рис. ниже). Затем бетонируют элемент. После приобретения бетоном необхо­димой прочности для восприятия сил предварительного обжатия (передаточная прочность) арматуру освобождают от упоров и она, стремясь укоротиться, сжимает бетон. Передача усилия на бетон происходит благодаря сцеплению между арматурой и бетоном, а также посредством специальных анкерных устройств, находящих­ся в бетоне конструкции, если сцепления недостаточно.

Во втором случае сначала изготовляют бетонный или слабоармированный элемент с каналами или пазами (рис. ниже). При дос­тижении бетоном требуемой передаточной прочности в каналы (пазы) заводят арматуру, натягивают ее с упором натяжного при­способления на торец элемента и заанкериваюг. Таким образом, бетон оказывается обжатым. Для создания сцепления арматуры с бетоном в каналы инъектируют цементный или цементно-песчаный раствор. Если напрягаемая арматура располагается на наружной поверхности элемента (кольцевая арматура трубопроводов, резер­вуаров и т. п.), то навивка ее с одновременным обжатием бетона производится специальными навивочными машинами. После натя­жения арматуры на поверхность элемента наносят торкретирова­нием защитный слой бетона. Натяжение арматуры может произво­диться механическим, электротермическим, комбинированным и физико-химическим способами.

Способы создания предварительного напряжения

а — натяжение на упоры; б — натяжение на бетон; I — натяжение арматуры и бетонирование элемента; II, IV — готовый элемент; III — элемент во время натяжения арматуры; 1 — упор; 2 — домкрат; 3 — анкер

При механическом способе арматуру натяг ивают гидравличес­кими или винтовыми домкратами, намоточными машинами и дру­гими механизмами. При электротермическом способе арматуру нагревают электрическим током до 300-350 °С, заводят в форму и закрепляют на упорах. В процессе остывания арматура укорачива­ется и получает предварительные растягивающие напряжения. Ком­бинированный способ натяжения сочетает электротермический и механический способы натяжения арматуры, осуществляемые од­новременно. При физико-химическом способе натяжение арматуры достигается в результате расширения бетона, приготовленного на специальном напрягающем цементе (НЦ), в процессе его гидро­термической обработки.

Арматура, заложенная в бетоне, препятствует увеличению его объема и растягивается, а в бетоне возникают сжимающие напря­жения. Натяжение арматуры на упоры производится механическим, электротермическим или комбинированным способами, а на бе­тон — только механическим способом.

Основное достоинство предварительно напряженных конструк­ций — высокая трещиностойкость. При загружении предварительно напряженного элемента внешней нагрузкой в бетоне растянутой зоны погашаются предварительно созданные сжимающие напряжения и только после этого возникают растягивающие напряжения. Чем выше прочность бетона и стали, тем большее предварительное обжатие можно создать в элементе.

Применение высокопрочных материалов позволяет сократить рас­ход арматуры на 30-70% по сравнению с ненапрягаемым железобето­ном. Расход бетона и масса конструкции при этом также снижаются. Кроме того, высокая трещиностойкость предварительно напряженных конструкций повышает их жесткость, водонепроницаемость, морозо­стойкость, сопротивление динамическим нагрузкам, долговечность.

К недостаткам предварительно напряженного железобетона следует отнести то, что процесс составляет значительную трудоем­кость изготовления конструкций. Помимо этого создается необхо­димость в использовании специального оборудования и рабочих высокой квалификации.

Напряженно-деформированные состояния предварительно на­пряженных элементов после образования трещин в бетоне растяну­той зоны сходны с элементами без предварительного напряжения.

Преднапряженные конструкции в каркасном строительстве

Современные методы карксного строительства используют технологию предварительного напряжения железобетонных конструкций. Преднапряженные конструкции — железобетонные конструкции, напряжение в которых искусственно создаётся во время изготовления, путём натяжения части или всей рабочей арматуры (обжатия части, или всего бетона).

Обжатие бетона в преднапряженных конструкциях на заданную величину осуществляется посредством натяжения арматурных элементов, стремящихся после их фиксации и отпуска натяжных устройств возвратиться в первоначальное состояние. При этом, проскальзывание арматуры в бетоне исключается их взаимным естественным сцеплением, или без сцепления арматуры с бетоном – специальной искусственной анкеровкой торцов арматуры в бетоне.

Трещиностойкость преднапряженных конструкций в 2 – 3 раза больше трещиностойкости железобетонных конструкций без предварительного напряжения. Это обусловлено тем, что предварительное обжатие арматурой бетона, значительно превосходит предельную деформацию натяжения бетона.

Преднапряженный бетон позволяет в среднем до 50% сокращать расход дефицитной стали в строительстве. Предварительное обжатие растянутых зон бетона значительно отдаляет момент образования трещин в растянутых зонах элементов, ограничивает ширину их раскрытия и повышает жесткость элементов, практически не влияя на их прочность.

Преимущества технологии преднапряжения железобетона

Преднапряженные конструкции оказываются экономичными для зданий и сооружений с такими пролетами, нагрузками и условиями работы, при которых применение железобетонных конструкций без предварительного напряжения технически невозможно, или вызывает чрезмерно большой перерасход бетона и стали для обеспечения требуемой жесткости и несущей способности конструкций.

Предварительное напряжение, увеличивающее жесткость и сопротивление конструкций образованию трещин, повышает их выносливость при работе на воздействие многократно повторяющейся нагрузки. Это объясняется уменьшением перепада напряжений в арматуре и бетоне, вызываемого изменением величины внешней нагрузки. Правильно запроектированные преднапряженные конструкции и здания безопасны в эксплуатации и более надежны, особенно в сейсмических зонах. С возрастанием процента армирования сейсмостойкость предварительно напряженных конструкций во многих случаях повышается. Это объясняется тем, что благодаря применению более прочных и легких материалов сечения преднапряженных конструкций в большинстве случаев оказываются меньшими по сравнению с железобетонными конструкциями без предварительного напряжения той же несущей способности, а, следовательно, более гибкими и легкими.

Читать еще:  Как открыть свою строительную фирму

В большинстве развитых зарубежных стран из предварительно напряженного железобетона во все возрастающих объемах изготавливают конструкции перекрытий и покрытий зданий различного назначения, значительную часть изделий, используемых в инженерных сооружениях и в транспортном строительстве; появились производства элементов наружного архитектурного оформления зданий.

Мировой опыт использования технологии преднапряжения

В мире монолитный железобетон большей частью является предварительно напряженным. В первую очередь, таким способом возводятся большепролетные сооружения, жилые здания, плотины, энергетические комплексы, телебашни и многое другое. Телебашни из монолитного преднапряженного железобетона выглядят особенно эффектно, став достопримечательностями многих стран и городов. Телебашня в Торонто является самым высоким в мире отдельно стоящим железобетонным сооружением. Ее высота 555 м.

Поперечное сечение башни в виде трилистника оказалось весьма удачным для размещения напрягаемой арматуры и бетонирования в скользящей опалубке. Ветровой опрокидывающий момент, на который рассчитана эта башня, составляет почти полмиллиона тоннометров при собственном весе наземной части башни чуть более 60 тыс. т.

В Германии и в Японии из монолитного преднапряженного железобетона широко строятся резервуары яйцевидной формы для очистных сооружений. К настоящему времени такие резервуары возведены суммарной емкостью более 1,2 млн.куб.м. Отдельные сооружения этого типа имеют емкость от 1 до 12 тыс.куб.м.

За рубежом все более широкое применение находят монолитные перекрытия увеличенного пролета с натяжением арматуры на бетон. Только в США таких конструкций ежегодно возводится более 10 млн.куб.м. Значительный объем таких перекрытий сооружается в Канаде.

В последнее время напрягаемая арматура в монолитных конструкциях все чаще применяется без сцепления с бетоном, т.е. не производится инъецирование каналов, а арматуру от коррозии или защищают специальными защитными оболочками, или обрабатывают антикоррозионными составами. Таким образом возводятся мосты, большепролетные здания, высотные сооружения и другие подобные объекты.

Помимо традиционных строительных целей монолитный предварительно-напряженный железобетон нашел широкое применение для корпусов реакторов и защитных оболочек атомных электростанций. Суммарная мощность АЭС в мире превышает 150 млн. кВт, из них мощность станций, корпуса реакторов и защитные оболочки которых построены из монолитного преднапряженного железобетона, составляет почти 40 млн. кВт. Защитные оболочки для реакторов АЭС стали обязательными. Именно отсутствие такой оболочки явилось причиной чернобыльской катастрофы.

Ярким примером строительных возможностей преднапряженного железобетона являются морские платформы для добычи нефти. В мире таких грандиозных сооружений возведено более двух десятков.

Построенная в 1995 г. в Норвегии платформа «Тролл» имеет полную высоту 472 м, что в полтора раза выше Эйфелевой башни. Платформа установлена на участке моря с глубиной более 300 м и рассчитана на воздействие ураганного шторма с высотой волны 31,5 м. На ее изготовление было израсходовано 250 тыс.куб.м. высокопрочного бетона, 100 тыс. т обычной стали и 11 тыс. т напрягаемой арматурной стали. Расчетный срок службы платформы 70 лет.

Традиционно обширной областью применения предварительно напряженного железобетона является мостостроение. В США, например, сооружено более 500 тысяч железобетонных мостов с различными пролетами. За последнее время там построено более двух десятков вантовых мостов длиной 600-700 м с центральными пролетами от 192 до 400 м. Из предварительно-напряженного железобетона сооружаются внеклассные мосты, которые строятся по индивидуальным проектам. Мосты пролетом до 50 м возводятся в сборном варианте из железобетонных преднапряженных балок.

Достижения в мостостроении из преднапряженного железобетона имеются и в других странах. В Австралии, в г. Брисбен, построен балочный мост с центральным пролетом 260 м, наибольшим среди мостов этого типа. Вантовый мост «Баррнос де Луна» в Испании имеет пролет 440, «Анасис» в Канаде — 465, мост в Гонконге — 475 м. Арочный мост в Южной Африке имеет наибольший пролет — 272 м. Мировой рекорд для вантовых мостов принадлежит мосту «Нормандия», где пролет 864 м. Ненамного уступает ему мост «Васко де Гама» в Лиссабоне, построенный к Всемирной выставке ЭКСПО-98. Общая протяженность этого мостового перехода превышает 18 км. Основные его несущие конструкции — пилоны и пролетные строения — выполнены из бетона с прочностью при сжатии более 60 МПа. Гарантированный срок службы моста 120 лет по критерию долговечности бетона (в России же в последнее время большепролетные мосты чаще строятся из стали).

Технология преднапряжения монолитного железобетона в России

В России на долю этих изделий приходится более трети общего производства сборных элементов. За рубежом значительное распространение имеет безопалубочное формование плитных конструкций на длинных стендах. Там обычной практикой является производство плит пролетом до 17 м, высотой сечения 40 см под нагрузку до 500 кгс/м2. В Финляндии железобетонные многопустотные плиты под такую же нагрузку выпускаются высотой сечения даже 50 см с пролетом до 21 м, то есть применение предварительного напряжения позволяет выпускать сборные элементы качественно иного уровня. Натяжение канатной арматуры на таких стендах, как правило, групповое при мощности домкратов 300-600 т. Сегодня разработаны различные системы без-опалубочного формования на длинных стендах «Спайрол», «Спэнкрит», «Спандек», «Макс Рот», «Партек» и других, отличающиеся высокой производительностью, применяемой арматурой, технологическими требованиями к бетону, формой поперечного сечения панелей и другими параметрами. На стендах длиной до 250 м изготавливают плиту со скоростью до 4 м/мин, по высоте в пакете можно бетонировать 6 плит. Ширина плит достигает 2,4 м, при максимальном пролете 21 м. Только плит «Спэнкрит» применяют в США более 15 млн. м2 ежегодно.

В свое время длинные стенды для безопалубочного формования по технологии «Макс Рот» появились и в России. Однако эта технология не получила дальнейшего распространения. В широко используемых у нас конструктивных системах зданий соединение элементов осуществляется через закладные детали. В плитах, изготавливаемых на длинных стендах, как правило, методом экструзии, возможности размещения закладных деталей ограничены. Однако для сборно-монолитных зданий плиты без закладных деталей могут найти самое широкое распространение, что и имеет место за рубежом, особенно в Скандинавских странах и в США.

Позднее в России появились линии «Партек» (на заводе ЖБК-17 в Москве, Санкт-Петербурге, Барнауле), что свидетельствует о появлении спроса на такие плиты. Совершенствование конструктивных систем зданий, безусловно, даст толчок к развитию технологии производства плитных изделий.

Затянувшийся российский застой в области применения преднапряженного железобетона частично связан еще и с тем, что у нас не получили должного изучения и применения предварительно-напряженные конструкции с натяжением арматуры на бетон, в том числе в построечных условиях.

«Энерпром» начинает развивать это направление и предлагает ряд оборудования собственной разработки для реализации такой технологии.

Ссылка на основную публикацию
Adblock
detector