Astapro.ru

33 квадратных метра
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Из проводящей ткани образуются элементы растений

Секреты тканей растений

Основное содержание.

  1. Классификация проводящей ткани.
  2. Характеристика ксилемы.
  3. Характеристика флоэмы.

В растительном организме, так же как и в организме животных имеется транспортные системы, обеспечивающие доставку питательных веществ по назначению. На сегодняшнем занятии разговор пойдёт о проводящих тканях растения.

Проводящие ткани – ткани, по которым происходит массовое передвижение веществ, возникли как неизбежное следствие приспособление к жизни на суше. От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по сосудам древесины (ксилемы), а нисходящий – по ситовидным элементам луба (флоэмы).

1. Восходящий ток веществ по сосудам ксилемы 2. Нисходящий ток веществ по ситовидным трубкам флоэмы

Клетки проводящей ткани характеризуются тем, что они вытянуты в длину и имеют форму трубочек с более или менее широким диаметром (в общем, напоминают сосуды у животных).

Существуют первичные и вторичные проводящие ткани.

Вспомним классификацию тканей на группы по форме клеток.

Ксилема и флоэма – это сложные ткани, состоящие из трёх основных элементов.

Таблица «Основные элементы ксилемы и флоэмы»

Проводящие элементы ксилемы.

Наиболее древними проводящими элементами ксилемы являются трахеиды (рис.1)– это вытянутые клетки с заостренными концами. Они дали начало древесинным волокнам.

Трахеиды имеют одревесневшую клеточную стенку с различной степенью утолщения, кольчатую, спиралевидную, точечную, пористую и т.д. форму (рис. 2). Фильтрация растворов происходит через поры, поэтому передвижение воды в системе трахеид совершается медленно.

Трахеиды встречаются у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных, являются существенными проводящими элементами ксилемы. Прочные стенки трахеид позволяют им выполнять не только водопроводящие функции, но и механические. Часто они являются единственными элементами, придающими органу прочность. Так, например, у хвойных деревьев в древесине отсутствует специальная механическая ткань, и механическая прочность обеспечивается трахеидами.

Длина трахеид колеблется от десятых долей миллиметра до нескольких сантиметров.

Рис. 2 Трахеиды и их расположение относительно друг друга

Рис. 2 Трахеиды и их расположение относительно друг друга

Сосуды – характерные проводящие элементы ксилемы покрытосеменных. Они представляют собой очень длинные трубки, образовавшиеся в результате слияния ряда клеток, соединяющихся «конец в конец». Каждая из клеток, образующих сосуд ксилемы, соответствует трахеиде и называется члеником сосуда. Однако членики сосуда короче и шире трахеид. Первая ксилема, появляющаяся в растении в процессе развития, носит название первичная ксилема; она закладывается в корнях и на верхушках побегов. Дифференцированные членики сосудов ксилемы появляются рядами на концах прокамбиальных тяжей. Сосуд возникает, когда соседние членики в данном ряду сливаются в результате разрушения перегородок между ними. Внутри сосуда сохраняются в виде ободков остатки разрушенных торцевых стенок.

Рис. 3 Расположение первичных и вторичных проводящих тканей в корне

Расположение первичных и вторичных проводящих тканей в стебле

Первые по времени образования сосуды (рис. 3) – протоксилема – закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки ещё продолжают вытягиваться. Зрелые сосуды протоксилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки ещё не сплошь одревеснели – лигнин (особое органическое вещество, вызывающее одревесневание стенок клеток) откладывается в них кольцами или по спирали. Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня.

Рис. 4 утолщения клеточных стенок сосудов

С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают своё развитие в зрелых частях органа, — формируется метаксилема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мёртвые, жёсткие, полностью одревесневшие трубки. Если бы их развитие завершилось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу.

Утолщения клеточных стенок сосудов так же, как и у трахеид, бывают кольчатыми, спиральными, лестничными, сетчатыми и пористыми (рис. 4 и рис. 5).

Рис. 5 Типы перфорации сосудов

Длинные полые трубки ксилемы – идеальная система для поведения воды на большие расстояния с минимальными помехами. Так же как и в трахеидах, вода может переходить из сосуда в сосуд через поры или через неодревесневающие части клеточной стенки. Вследствие одревесневания клеточные стенки сосудов обладают высокой прочностью на разрыв, что тоже очень важно, потому что благодаря этому трубки не спадаются, когда вода движется в них под натяжением. Вторую свою функцию – механическую – ксилема также выполняет благодаря тому, что она состоит из ряда одревесневших трубок.

Проводящие элементы флоэмы. Ситовидные трубки образуются из прокамбия в первичной флоэме ( протофлоэма) и из камбия во вторичной флоэме ( метафлоэма). По мере того как растут окружающие её ткани, протофлоэма растягивается и значительная её часть отмирает, перестает функционировать. Метафлоэма созревает уже после того, как закончится растяжение.

Членики ситовидных трубок имеют весьма характерное строении. У них более тонкие клеточные стенки, состоящие из целлюлозы и пектиновых веществ, и этим они напоминают паренхимные клетки, однако их ядра при созревании отмирают, а от цитоплазмы остаётся только тонкий слой, прижатый к клеточной стенке. Несмотря на отсутствие ядра, членики ситовидных трубок остаются живыми, но их существование зависит от примыкающих к ним клеток-спутниц, развивающихся из одной с ними меристематической клетки (рис. 6).

Вопрос: — Какие клетки животных, являясь безъядерными, также остаются живыми?

Членик ситовидной трубки и его клетка-спутница составляют вместе одну функциональную единицу; у клетки-спутницы цитоплазма очень густая и отличается высокой активностью, на что указывает присутствие многочисленных митохондрий и рибосом. В структурном и функциональном отношении клетка-спутница и ситовидная трубка тесно связаны и совершенно необходимы для их функционирования: в случае гибели клеток-спутников погибают и ситовидные элементы.

Рис. 6 Ситовидная трубка и клетка спутница

Характерной чертой ситовидных трубок является наличие ситовидных пластинок (рис. 7). Эта их особенность сразу же бросается в глаза при рассматривании в световом микроскопе. Ситовидная пластинка возникает на месте соединения торцевых стенок двух соседних члеников ситовидных трубок. Вначале через клеточные стенки проходят плазмодесмы, но затем их каналы расширяются и образуют поры, так что торцевые стенки приобретают вид сита, через которое раствор перетекает из одного членика в другой. В ситовидной трубке ситовидные пластинки располагаются через определённые промежутки, соответствующие отдельным членикам этой трубки.

Рис. 7 Ситовидные пластинки ситовидных трубок

Основные понятия: Флоэма (протофлоэма, метафлоэма), ситовидные трубки, клетки-спутницы. Ксилема (протоксилема, метаксилема) трахеиды, сосуды.

Ответьте на вопросы:

  1. Чем представлена ксилема у голосеменных и покрытосеменных растений?
  2. В чём заключается отличие в строении флоэмы у данных групп растений?
  3. Объясните противоречие: сосны начинают вторичный рост рано и образуют много вторичной ксилемы, но растут медленней и уступают в росте лиственным породам.
  4. В чём заключается более упрощённое строение древесины хвойных?
  5. Почему сосуды являются более совершенной проводящей системой, чем трахеиды?
  6. Чем вызвана необходимость образования утолщений на стенках сосудов?
  7. В чём заключаются принципиальные различия между проводящими элементами флоэмы и ксилемы? С чем это связано?
  8. Какова функция клеток-спутниц?
Читать еще:  Проводящая ткань растений по клеткам которой осуществляется

Ткани растений

В биологии тканью называют группу клеток, имеющих сходное строение и происхождение, а также выполняющих одинаковые функции. У растений наиболее разнообразные и сложно устроенные ткани развились в процессе эволюции у покрытосеменных (цветковых). Органы растений обычно образованы несколькими тканями. Можно выделить шесть типов тканей растений: образовательную, основную, проводящую, механическую, покровную, секреторную. Каждая ткань включает подтипы. Между тканями, а также внутри них бывают межклетники — промежутки между клетками.

Образовательная ткань

Благодаря делению клеток образовательной ткани растение увеличивается в длину и толщину. При этом часть клеток образовательной ткани дифференцируется в клетки других тканей.

Клетки образовательной ткани достаточно мелкие, плотно прилегают друг к другу, имеют крупное ядро и тонкую оболочку.

Образовательная ткань в растениях находится в конусах нарастания корня (кончик корня) и стебля (верхушка стебля), бывает в основаниях междоузлий, также образовательная ткань составляет камбий (который обеспечивает рост стебля в толщину).

Паренхима, или основная ткань

К паренхиме относят несколько разновидностей тканей. Различают ассимиляционную (фотосинтезирующую), запасающую, водоносную и воздухоносную основную ткань.

Фотосинтезирующая ткань состоит из клеток, содержащих хлорофилл, т. е. зеленых клеток. Эти клетки имеют тонкие стенки, содержат большое количество хлоропластов. Основная их функция — фотосинтез. Ассимиляционная ткань составляет мякоть листьев, входит в состав коры молодых стеблей деревьев и стебли трав.

В клетках запасающей ткани накапливаются запасы питательных веществ. Эта ткань составляет эндосперм семян, входит в состав клубней, луковиц и др. Сердцевина стебля, внутренние клетки коры стебля и корня, сочный околоплодник также обычно состоят из запасающей паренхимы.

Водоносная паренхима свойственна лишь ряду растений, обычно засушливых мест обитания. В клетках этой ткани накапливается вода. Водоносная ткань может быть как в листьях (алоэ), так и в стебле (кактусы).

Воздухоносная ткань свойственна водным и болотным растениям. Ее особенностью является наличие большого количества межклетников, содержащих воздух. Это облегчает газообмен растению, когда он затруднен.

Проводящая ткань

Общей функцией различных проводящих тканей является проведение веществ от одних органов растения к другим. В стволах древесных растений клетки проводящей ткани расположены в древесине и лубе. Причем в древесине расположены сосуды (трахеи) и трахеиды, по которым перемещается водный раствор от корней, а в лубе — ситовидные трубки, по которым перемещаются органические вещества от фотосинтезирующих листьев.

Сосуды и трахеиды — это мертвые клетки. По сосудам водный раствор поднимается быстрее, чем по трахеидам.

Ситовидные трубки являются живыми, но безъядерными клетками.

Покровная ткань

К покровной ткани относится кожица (эпидермис), пробка, корка. Кожица покрывает листья и зеленые стебли, это живые клетки. Пробка состоит из мертвых клеток, пропитанных жироподобным веществом, не пропускающим воду и воздух.

Главные функции любой покровной ткани — это защита внутренних клеток растения от механического повреждения, высыхания, проникновения микроорганизмов, перепадов температуры.

Пробка является вторичной покровной тканью, так как возникает на месте кожицы у стеблей и корней многолетних растений.

Корка состоит из пробки и отмерших слоев основной ткани.

Механическая ткань

Для клеток механической ткани характерны сильно утолщенные одревесневшие оболочки. Функции механической ткани — это придание телу и органам растений прочности и упругости.

В стеблях покрытосеменных растений механическая ткань может располагаться одним целостным слоем или же отдельными тяжами, отстоящими друг от друга.

В листьях волокна механической ткани обычно располагаются рядом с волокнами проводящей ткани. Вместе они образуют жилки листа.

Секреторная, или выделительная ткань растений

Клетки секреторной ткани выделяют различные вещества, и поэтому функции у этой ткани разные. Выделительные клетки у растений выстилают смоляные и эфиромасличные ходы, образуют своеобразные железы и железистые волоски. К секреторной ткани принадлежат нектарники цветков.

Смолы выполняют защитную функцию при повреждении стебля растения.

Нектар привлекает насекомых-опылителей.

Бывают секреторные клетки, выводящие продукты обмена, например, соли щавелевой кислоты.

Из проводящей ткани образуются элементы растений

Ткань — группа клеток, структурно и функционально взаимосвязанных друг с другом, сходных по происхождению, строению и выполняющих определенные функции в организме.

Ткани возникли у высших растений в связи с выходом на сушу и наибольшей специализации достигли упокрытосеменных, у которых их выделяют до 80 видов. Важнейшие ткани растений:

Ткани могут быть простыми и сложными. Простые ткани состоят из одного вида клеток (например, колленхима, меристема), а сложные — из различных по строению клеток, выполняющих кроме основных и дополнительные функции (эпидерма, ксилема, флоэма и др.).

Образовательные ткани , или меристемы , являются эмбриональными тканями. Благодаря ним долго сохраняющейся способности к делению (некоторые клетки делятся в течение всей жизни) меристемы участвуют в образовании всех постоянных тканей и тем самым формируют растение, а также определяют его длительный рост.

Клетки образовательной ткани тонкостенные, многогранные, плотно сомкнутые, с густой цитоплазмой, с крупным ядром и очень мелкими вакуолями. Они способны делиться в разных направлениях.

По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов, что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру (вторичный рост) обеспечивается вторичными меристемами — камбием и феллоге-ном. По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркаляр-ные) и раневые (травматические) меристемы.

Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей —эпидермис, перидерму и корку.

Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов (рис. 8.1). Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют транспирацию и газообмен растения.

Перидерма — вторичная покровная ткань стеблей и корней, сменяющая эпидермис у многолетних (реже однолетних) растений (рис. 8.2.). Ее образование связано с деятельностью вторичной меристемы —феллогена (пробкового камбия), клетки которого делятся и дифференцируются в центробежном направлении (наружу) в пробку (феллему), а в центростремительном, (внутрь) — в слой живых паренхимных клеток (феллодерму). Пробка, феллоген и феллодерма составляют перидерму.

Читать еще:  Тенелюбивые растения для сада

Рис. 8.1. Эпидерма листа различных растений: ахлорофитум; 6плющ обыкновенный: вгерань душистая; гшелковица белая; 1клетки эпидермы; 2замыкающие клетки устьиц; 3устьичная щель.

Рис 8.2. Перидерма стебля бузины (апоперечный разрез побега, бчечевички): Iвыполняющая ткань; 2остатки эпидермы; 3пробка (феллема); 4феллоген; 5феллодерма.

Клетки пробки пропитаны жироподобным веществом — суберином —и не пропускают воду и воздух, поэтому содержимое клетки отмирает и она заполняется воздухом. Многослойная пробка образует своеобразный чехол стебля, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в последней имеются особые образования —чечевички; это разрывы в пробке, заполненные рыхло расположенными клетками.

Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают, На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой для растения, чем пробка.

Проводящие ткани обеспечивают передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани — ксилему (древесину) и флоэму (луб).

Ксилема —это главная водопроводящая ткань высших сосудистых растений, обеспечивающая передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). Она также выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды) (рис. 8.3), древесинная паренхима и механическая ткань.

Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды.

Рис 8.3. Элементы ксилемы (а) и флоэмы (6): 1—5кольчатая, спиральная, лестничная и пористая (4, 5) трахеи соответственно; 6 — коль чатая и пористая трахеиды; 7ситовидная трубка с клеткой-спутницей.

Трахеи (сосуды) —это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность. В зависимости от характера утолщения оболочек различают трахеи кольчатые, спиральные, лестничные и др. (см. рис. 8.3).

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами (см. рис. 8.3), паренхимы и механической ткани. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поперечные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и сосуды, тянутся по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы — проводящие пучки.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).

Рис. 8.4. Механические ткани: ауголковая колленхима; 6склеренхима; в -— склереиды из плодов алычи: 1цитоплазма, 2утолщенная клеточная стенка, 3поровые канальцы.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.

Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.

Основная ткань , или паренхима , состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические, проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму) и водоносную паренхиму (рис. 8.5).

Рис 8.5. Паренхимные ткани: 1—3хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4—запасающая (клетки с зернами крахмала); 5 — воздухоносная, или аэренхима.

Клетки ассимиляционной ткани содержат хлоропласты и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

В клетках запасающей паренхимы откладываются белки, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для накопления воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2—3 тыс. л воды). У водных и болотных растений развивается особый тип основной ткани — воздухоносная паренхима, или аэренхима . Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена

Читать еще:  Как утеплить стены квартиры изнутри

Bio-Lessons

Образовательный сайт по биологии

Растительные ткани

Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани. Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм:

группа клеток —> ткань —> орган —> организм

У растений различают 6 видов тканей: образовательную, покровную, основную, опорную, проводящую и выделительную.

1. Образовательная ткань находится на верхушке побега и на верхушке корня (рис.1). Ее клетки плотно прилегают друг к другу. У них тонкие оболочки. За счет деления клеток растения растут. Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев – функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей.

Со временем клетки утрачивают способность делиться. Они становятся клетками постоянных тканей, таких как покровные, основные, проводящие и др.

Рис.1 Образовательная ткань

2. Покровная ткань формируется на поверхности органов (рис.2). Она представлена кожицей, пробкой и коркой. Защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды.

Клетки кожицы – эпидермис – образуются на всех молодых органах растений. Эпидермис обеспечивает газообмен, испарение, всасывание, предохраняет органы растений от высыхания. Но для зимующих растений это ненадежная защита. Вместо него перед наступлением зимы образуется пробка. Эта многослойная ткань состоит из мертвых, плотно прилегающих друг к другу клеток. Она защищает растения.

Корка – это наружная часть коры. Как и пробка, она состоит из мертвых клеток и защищает стволы и ветви от излишнего испарения, перегрева, вымерзания, ожога солнечными лучами, объедания животными.

Рис.2 Покровная ткань

3.Основная ткань состоит из живых клеток и образует основу всех органов растения (рис.3).

В зависимости от функции она подразделяется на фотосинтезирующую и запасающую.

Клетки фотосинтезирующей ткани содержат хлоропласты. В них осуществляется фотосинтез. Основная масса этой ткани сосредоточена в листьях, меньшая часть – в молодых зеленых стеблях.

Запасающая ткань плодов, семян, стеблей, луковиц, листьев, корнеплодов, корневищ участвует в накоплении питательных веществ, которые необходимы прежде всего многолетним растениям.

Часть клеток основной ткани служит для запасания воды. Водоносная ткань содержится в основном в стеблях и листьях растений пустынных мест обитания и солончаков, например в стеблях кактусов или листьях алоэ.

Воздухоносная ткань рыхлая. У нее хорошо развиты межклеточные пространства (межклетники), в которые проникает воздух. Особенно хорошо они сформированы у растений, произрастающих в воде (водные и болотные) и на глинистой почве. По воздухоносным межклетникам кислород доставляется к тем частям растения, связь которых с атмосферой затруднена.

Рис.3 Основная ткань

4.Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры (рис.4). Она находится в стеблях, листьях и плодах растений. Опорная ткань придает упругость и прочность всем органам растений. Поэтому при сильном ветре не ломаются хрупкие стебли, не разрываются большие листовые пластинки и листья не срываются с деревьев.

Рис.4 Опорная (механическая) ткань

В мякоти плодов груши, айвы, рябины, в семенах пальмы, в косточках вишни, сливы, абрикоса, персика встречаются каменистые клетки. Они тоже являются опорной тканью.

В органах молодых растений опорная ткань развивается не сразу. Например, косточки незрелых фруктов – сливы, вишни, абрикоса – мягкие, беловатого цвета. По мере созревания плодов их оболочка темнеет и становится твердой. Семена от повреждений защищает опорная ткань, состоящая сначала из живых клеток. Позже они теряют цитоплазму, стенки утолщаются и древеснеют.

В размещении механической ткани в растительных органах существует особая закономерность. Изучая ее, человек учится у растений создавать прочные, экономичные, радующие глаз здания, башни, мосты, которые к тому же будут естественно вписываться в окружающую среду.

5. Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. Она состоит из двух частей (рис.5). Одна часть – ксилема, или древесина, – обеспечивает восходящий поток и доставляет воду и минеральные соли от корней в надземную часть растения. Клетки древесины представляют собой полые трубки (сосуды) с одеревеневшими мертвыми стенками. В сосудах имеются отверстия, через которые вдоль всего сосуда осуществляется движение жидкости. Другая часть – флоэма, или луб, – обеспечивает нисходящий поток, т. е. проведение образовавшихся в листьях органических веществ в подземные органы. В состав луба входят ситовидные трубки и клетки-спутницы. Луб и древесина расположены в стебле, корне, жилках листьев.

Рис.5 Ксилема. Флоэма.

Органические вещества, образованные в листьях, доставляются к стеблям, корням, точкам роста, плодам, семенам по ситовидным трубкам (рис.6). Клетки ситовидных трубок живые. В поперечных перегородках члеников ситовидных трубок имеется большое количество мелких отверстий, как в сите. У растений элементы проводящей, опорной и запасающей тканей образуют проводящие, или сосудисто-волокнистые, пучки. Они хорошо видны в листьях в виде жилок, распространены в стебле, корнях и плодах.

Рис.6 Проводящая ткань

Осенью отверстия перегородок ситовидных трубок затягиваются мозолистым веществом, и ток органических веществ по трубке прекращается. Растение впадает в состояние покоя. Весной мозолистое вещество растворяется, и ток по ситовидным трубкам возобновляется. Проводящая ткань осуществляет связь между корнем и побегом.

6. Выделительная ткань. Известно, что у растений нет специальных выделительных органов, как у животных. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски (рис. 7). нектарники и т. д. Растения выделяют ароматические и сахаристые вещества, привлекающие насекомых-опылителей. Эфирные масла защищают растения от поедания травоядными животными.

Рис.7 Выделительная ткань

Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани. Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм. Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей. Покровная ткань защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды. Основная ткань состоит из живых клеток и образует основу всех органов растения. Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры.
Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. У растений нет специальных выделительных органов. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски.

Биологический русско-английский глоссарий


Ссылка на основную публикацию
Adblock
detector