Astapro.ru

33 квадратных метра
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Живые клетки проводящей ткани

Секреты тканей растений

Основное содержание.

  1. Классификация проводящей ткани.
  2. Характеристика ксилемы.
  3. Характеристика флоэмы.

В растительном организме, так же как и в организме животных имеется транспортные системы, обеспечивающие доставку питательных веществ по назначению. На сегодняшнем занятии разговор пойдёт о проводящих тканях растения.

Проводящие ткани – ткани, по которым происходит массовое передвижение веществ, возникли как неизбежное следствие приспособление к жизни на суше. От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по сосудам древесины (ксилемы), а нисходящий – по ситовидным элементам луба (флоэмы).

1. Восходящий ток веществ по сосудам ксилемы 2. Нисходящий ток веществ по ситовидным трубкам флоэмы

Клетки проводящей ткани характеризуются тем, что они вытянуты в длину и имеют форму трубочек с более или менее широким диаметром (в общем, напоминают сосуды у животных).

Существуют первичные и вторичные проводящие ткани.

Вспомним классификацию тканей на группы по форме клеток.

Ксилема и флоэма – это сложные ткани, состоящие из трёх основных элементов.

Таблица «Основные элементы ксилемы и флоэмы»

Проводящие элементы ксилемы.

Наиболее древними проводящими элементами ксилемы являются трахеиды (рис.1)– это вытянутые клетки с заостренными концами. Они дали начало древесинным волокнам.

Трахеиды имеют одревесневшую клеточную стенку с различной степенью утолщения, кольчатую, спиралевидную, точечную, пористую и т.д. форму (рис. 2). Фильтрация растворов происходит через поры, поэтому передвижение воды в системе трахеид совершается медленно.

Трахеиды встречаются у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных, являются существенными проводящими элементами ксилемы. Прочные стенки трахеид позволяют им выполнять не только водопроводящие функции, но и механические. Часто они являются единственными элементами, придающими органу прочность. Так, например, у хвойных деревьев в древесине отсутствует специальная механическая ткань, и механическая прочность обеспечивается трахеидами.

Длина трахеид колеблется от десятых долей миллиметра до нескольких сантиметров.

Рис. 2 Трахеиды и их расположение относительно друг друга

Рис. 2 Трахеиды и их расположение относительно друг друга

Сосуды – характерные проводящие элементы ксилемы покрытосеменных. Они представляют собой очень длинные трубки, образовавшиеся в результате слияния ряда клеток, соединяющихся «конец в конец». Каждая из клеток, образующих сосуд ксилемы, соответствует трахеиде и называется члеником сосуда. Однако членики сосуда короче и шире трахеид. Первая ксилема, появляющаяся в растении в процессе развития, носит название первичная ксилема; она закладывается в корнях и на верхушках побегов. Дифференцированные членики сосудов ксилемы появляются рядами на концах прокамбиальных тяжей. Сосуд возникает, когда соседние членики в данном ряду сливаются в результате разрушения перегородок между ними. Внутри сосуда сохраняются в виде ободков остатки разрушенных торцевых стенок.

Рис. 3 Расположение первичных и вторичных проводящих тканей в корне

Расположение первичных и вторичных проводящих тканей в стебле

Первые по времени образования сосуды (рис. 3) – протоксилема – закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки ещё продолжают вытягиваться. Зрелые сосуды протоксилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки ещё не сплошь одревеснели – лигнин (особое органическое вещество, вызывающее одревесневание стенок клеток) откладывается в них кольцами или по спирали. Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня.

Рис. 4 утолщения клеточных стенок сосудов

С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают своё развитие в зрелых частях органа, — формируется метаксилема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мёртвые, жёсткие, полностью одревесневшие трубки. Если бы их развитие завершилось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу.

Утолщения клеточных стенок сосудов так же, как и у трахеид, бывают кольчатыми, спиральными, лестничными, сетчатыми и пористыми (рис. 4 и рис. 5).

Рис. 5 Типы перфорации сосудов

Длинные полые трубки ксилемы – идеальная система для поведения воды на большие расстояния с минимальными помехами. Так же как и в трахеидах, вода может переходить из сосуда в сосуд через поры или через неодревесневающие части клеточной стенки. Вследствие одревесневания клеточные стенки сосудов обладают высокой прочностью на разрыв, что тоже очень важно, потому что благодаря этому трубки не спадаются, когда вода движется в них под натяжением. Вторую свою функцию – механическую – ксилема также выполняет благодаря тому, что она состоит из ряда одревесневших трубок.

Проводящие элементы флоэмы. Ситовидные трубки образуются из прокамбия в первичной флоэме ( протофлоэма) и из камбия во вторичной флоэме ( метафлоэма). По мере того как растут окружающие её ткани, протофлоэма растягивается и значительная её часть отмирает, перестает функционировать. Метафлоэма созревает уже после того, как закончится растяжение.

Членики ситовидных трубок имеют весьма характерное строении. У них более тонкие клеточные стенки, состоящие из целлюлозы и пектиновых веществ, и этим они напоминают паренхимные клетки, однако их ядра при созревании отмирают, а от цитоплазмы остаётся только тонкий слой, прижатый к клеточной стенке. Несмотря на отсутствие ядра, членики ситовидных трубок остаются живыми, но их существование зависит от примыкающих к ним клеток-спутниц, развивающихся из одной с ними меристематической клетки (рис. 6).

Читать еще:  Меню низким содержанием углеводов

Вопрос: — Какие клетки животных, являясь безъядерными, также остаются живыми?

Членик ситовидной трубки и его клетка-спутница составляют вместе одну функциональную единицу; у клетки-спутницы цитоплазма очень густая и отличается высокой активностью, на что указывает присутствие многочисленных митохондрий и рибосом. В структурном и функциональном отношении клетка-спутница и ситовидная трубка тесно связаны и совершенно необходимы для их функционирования: в случае гибели клеток-спутников погибают и ситовидные элементы.

Рис. 6 Ситовидная трубка и клетка спутница

Характерной чертой ситовидных трубок является наличие ситовидных пластинок (рис. 7). Эта их особенность сразу же бросается в глаза при рассматривании в световом микроскопе. Ситовидная пластинка возникает на месте соединения торцевых стенок двух соседних члеников ситовидных трубок. Вначале через клеточные стенки проходят плазмодесмы, но затем их каналы расширяются и образуют поры, так что торцевые стенки приобретают вид сита, через которое раствор перетекает из одного членика в другой. В ситовидной трубке ситовидные пластинки располагаются через определённые промежутки, соответствующие отдельным членикам этой трубки.

Рис. 7 Ситовидные пластинки ситовидных трубок

Основные понятия: Флоэма (протофлоэма, метафлоэма), ситовидные трубки, клетки-спутницы. Ксилема (протоксилема, метаксилема) трахеиды, сосуды.

Ответьте на вопросы:

  1. Чем представлена ксилема у голосеменных и покрытосеменных растений?
  2. В чём заключается отличие в строении флоэмы у данных групп растений?
  3. Объясните противоречие: сосны начинают вторичный рост рано и образуют много вторичной ксилемы, но растут медленней и уступают в росте лиственным породам.
  4. В чём заключается более упрощённое строение древесины хвойных?
  5. Почему сосуды являются более совершенной проводящей системой, чем трахеиды?
  6. Чем вызвана необходимость образования утолщений на стенках сосудов?
  7. В чём заключаются принципиальные различия между проводящими элементами флоэмы и ксилемы? С чем это связано?
  8. Какова функция клеток-спутниц?

Биология. 6 класс

Конспект урока

Биология, 6 класс

Урок 7. Передвижение веществ у растений

Перечень вопросов, рассматриваемых на уроке

  1. На уроке будут раскрыты особенности передвижения воды, минеральных и органических веществ в растении.
  2. Сформировано представление о биологическом значении транспорта веществ для растения.
  3. Более подробно изучены проводящие ткани.

Проводящая ткань – вид тканей растений, служащих для передвижения по организму растворённых питательных веществ. У многих высших растений она представлена проводящими элементами (сосудами и ситовидными трубками).

Сосуды (трахеи) – длинные трубки, образованные одним рядом мёртвых клеток со сквозными отверстиями на поперечных стенках, по которым происходит передвижение веществ из корней в другие органы растений (восходящий ток веществ).

Ситовидные трубки – удлинённые живые клетки, по которым органические вещества передвигаются из листьев в другие органы растений (нисходящий ток веществ).

*Луб – проводящая ткань растений, в состав которой входят ситовидные трубки и другие виды клеток.

*Древесина – проводящая ткань растений, состоящая из сосудов и других видов клеток.

Основная и дополнительная литература по теме урока

  1. Биология. 5 – 6 класс. Линия жизни / В. В. Пасечник, С. В. Суматохин, Г. С. Калинова, Г. Г. Швецов, З. Г. Гапонюк. – М.: Просвещение, 2018.
  2. Биология в схемах и таблицах / А. Ю. Ионцева, А. В. Торгалов.
  3. Введение в биологию. Неживые тела. Организмы: учеб. для уч — ся 5 – 6 кл. общеобразоват. учеб. заведений / А. И. Никишов. – М.: Гуманитар. изд. центр ВЛАДОС, 2012.
  4. Биология. Живой организм. 5 – 6 классы: учебник для общеобразовательных учреждений с приложением на электронном носителе / Л. Н. Сухорукова, В. С. Кучменко, И. Я. Колесникова. – М.: Просвещение, 2013.
  5. Биология. Обо всем живом. 5 класс: учебник / С. Н. Ловягин, А. А. Вахрушев, А. С. Раутиан. – М.: Баласс, 2014.

Теоретический материал для самостоятельного изучения

На сегодняшнем уроке мы продолжим изучение процессов жизнедеятельности живых организмов и познакомимся с тем, как осуществляется транспорт веществ.

Вы уже знаете, что в живых организмах происходят сложные процессы, в результате которых образуются разнообразные вещества. Обычно эти вещества могут передвигаться внутри клетки от одного органоида к другому или же между клетками одного организма, переходя от одной клетки к другой.

Вода с минеральными веществами поступает в растение из почвы через корневые волоски. Затем по клеткам коры этот раствор поступает в сосуды проводящей ткани, которые находятся в центральном цилиндре корня. Сосуды – это длинные трубки, которые образуются из многих клеток, поперечные стенки между которыми разрушаются, а внутреннее содержимое отмирает. Таким образом, сосуды – мертвые проводящие элементы. По сосудам, благодаря действию ряда факторов, вода и растворённые в ней вещества передвигаются по стеблю к листьям. Это направление движения растворов получило название восходящий поток веществ.

Органические вещества транспортируются от листьев по стеблю в направлении корневой системы. Передвижение этих веществ происходит сначала по ситовидным трубкам листа, а потом стебля. Ситовидные трубки – это живые клетки, поперечные стенки которых имеют много отверстий и похожи на сито. Отсюда и название этих проводящих элементов. Поток органических веществ по ситовидным трубкам от листа ко всем органам называют нисходящим.

Таким образом, восходящий поток обеспечивает транспорт неорганических веществ по сосудам, а нисходящий поток – транспорт органических веществ по ситовидным трубкам.

Примеры и разбор решения заданий тренировочного модуля

Читать еще:  Основные показатели при исследовании воды

Задание 1. Закончите фразу.

Передвижение веществ в растении обеспечивает____________________.

В образовании органических веществ принимает участие__________________.

  1. Проводящая ткань
  2. Образовательная ткань
  3. Фотосинтезирующая ткань
  4. Покровная ткань
  5. Механическая
  6. Запасающая

Правильный вариант ответа:

Передвижение веществ в растении обеспечивает проводящая ткань.

В образовании органических веществ принимает участие фотосинтезирующая ткань.

Разбор типового контрольного задания

Проводящая и образовательная ткани

Проводящая ткань

В стебле и листьях растений расположены пучки проводящей ткани. В проводящей ткани выделяют сосуды и ситовидные трубки.

Сосуды — последовательно соединённые мёртвые полые клетки, поперечные перегородки между которыми исчезают. По сосудам вода и растворённые в ней минеральные вещества из корней поступают в стебель и листья.

Ситовидные трубки — удлинённые безъядерные живые клетки, последовательно соединённые между собой. По ним органические вещества из листьев (где они образовались) перемещаются к другим органам растения.

Проводящая ткань обеспечивает транспортировку воды с растворёнными в ней минералами.

Эта ткань образует две транспортные системы:

  • восходящую (от корней к листьям);
  • нисходящую (от листьев ко всем остальным частям растений).

Восходящая транспортная система состоит из трахеид и сосудов (ксилема или древесина), причём сосуды более совершенные проводящие средства, чем трахеиды.

В нисходящих системах ток воды с продуктами фотосинтеза проходит по ситовидным трубкам (флоэма или луб).

Ксилема и флоэма образуют сосудисто-волокнистые пучки – «кровеносную систему» растения, которая пронизывает его полностью, соединяя в одно целое.

Ученые считают, что возникновение тканей связано в истории Земли с выходом растений на сушу. Когда часть растения оказалась в воздушной среде, а другая часть (корневая) — в почве, появилась необходимость доставки воды и минеральных солей от корней к листьям, а органических веществ — от листьев к корням. Так в ходе эволюции растительного мира возникло два типа проводящих тканей — древесина и луб.

По древесине (по трахеидам и сосудам) вода с растворенными минеральными веществами поднимается от корней к листьям — это водопроводящий, или восходящий, ток. По лубу (по ситовидным трубкам) образовавшиеся в зеленых листьях органические вещества поступают к корням и другим органам растения — это нисходящий ток.

Образовательная ткань

Это первичная ткань, из которой образуются все другие ткани растения. Она состоит из особых клеток, способных к многократному делению. Именно из этих клеток состоит зародыш любого растения.

Эта ткань сохраняется и у взрослого растения. Она располагается:

  • внизу корневой системы и на верхушках стеблей (обеспечивает рост растения в высоту и развитие корневой системы) – верхушечная образовательная ткань;
  • внутри стебля (обеспечивает рост растения в ширину, его утолщение) – боковая образовательная ткань.

В отличие от других тканей, цитоплазма образовательной ткани гуще и плотнее. Клетка имеет хорошо развитые органоиды, обеспечивающие синтез белка. Ядру характерны крупные размеры. Масса ядра и цитоплазмы поддерживаются в постоянном соотношении. Увеличение ядра сигнализирует о начале процесса клеточного деления, происходящего путем митоза для вегетативных частей растений и мейоза для спорогенных меристем.

Проводящая ткань: особенности строения

Почти все многоклеточные живые организмы состоят из различных типов тканей. Это совокупность клеток, похожих по строению, объединенных общими функциями. Для растений и животных они неодинаковы.

Разнообразие тканей живых организмов

В первую очередь все ткани можно разделить на животные и растительные. Они бывают разными. Давайте рассмотрим их.

Какими могут быть животные ткани?

Животные ткани бывают таких типов:

Все они, кроме первой, делятся на виды. Мышечная ткань бывает гладкой, поперечно-полосатой и сердечной. Эпителиальная делится на однослойную, многослойную — в зависимости от количества слоев, а также на кубическую, цилиндрическую и плоскую — в зависимости от формы клеток. Соединительная ткань объединяет такие виды, как рыхлая волокнистая, плотная волокнистая, ретикулярная, кровь и лимфа, жировая, костная и хрящевая.

Разнообразие тканей растений

Растительные ткани бывают следующих типов:

  • основная;
  • покровная;
  • проводящая ткань;
  • механическая;
  • образовательная.

Все типы растительных тканей объединяют несколько видов. Так, к основным относятся ассимиляционная, запасающая, водоносная и воздухоносная. Покровные ткани объединяют такие виды, как кора, пробка и эпидерма. К проводящей ткани относятся флоэма и ксилема. Механическая делится на колленхиму и склеренхиму. К образовательным относятся боковые, верхушечные и вставочные.

Все ткани выполняют определенные функции, и их строение соответствует роли, которую они выполняют. В этой статье будет рассмотрена подробнее проводящая ткань, особенности строения ее клеток. Также поговорим и о ее функциях.

Проводящая ткань: особенности строения

Эти ткани делятся на два вида: флоэму и ксилему. Так как они обе сформированы из одной и той же меристемы, то в растении они расположены рядом друг с другом. Однако строение проводящих тканей двух видов различается. Давайте поговорим подробнее о двух типах проводящих тканей.

Функции проводящих тканей

Их основная роль — транспорт веществ. Однако функции проводящих тканей, относящихся не к одному виду, различаются.

Роль ксилемы — проведение растворов химических веществ от корня вверх ко всем остальным органам растения.

А функция флоэмы — проведение растворов в обратном направлении — от определенных органов растения по стеблю вниз к корню.

Что такое ксилема?

Она также еще называется древесиной. Проводящая ткань данного вида состоит из двух разных проводящих элементов: трахеид и сосудов. Также в ее состав входят механические элементы — древесинные волокна, и основные элементы — древесинная паренхима.

Читать еще:  Размножение можжевельника черенками и отводками

Как устроены клетки ксилемы?

Клетки проводящей ткани делятся на два вида: трахеиды и членики сосудов. Трахеида — это очень длинная клетка с ненарушенными стенками, в которых присутствуют поры для транспорта веществ.

Второй проводящий элемент клетки — сосуд — состоит из нескольких клеток, которые называются члениками сосудов. Эти клетки расположены друг над другом. В местах соединения члеников одного и того же сосуда находятся сквозные отверстия. Они называются перфорациями. Эти отверстия необходимы для транспорта веществ по сосудам. Перемещение разнообразных растворов по сосудам происходит намного быстрее, чем по трахеидам.

Клетки обоих проводящих элементов являются мертвыми и не содержат протопластов (протопласты — это содержимое клетки, за исключением клеточной стенки, то есть это ядро, органоиды и клеточная мембрана). Протопласты отсутствуют, так как если бы они были в клетке, транспорт веществ по ней был бы очень затруднен.

По сосудам и трахеидам растворы могут транспортироваться не только вертикально, но и горизонтально — к живым клеткам или соседним проводящим элементам.

Стенки проводящих элементов имеют утолщения, которые придают клетке прочность. В зависимости от вида данных утолщений, проводящие элементы делятся на спиральные, кольчатые, лестничные, сетчатые и точечно-поровые.

Функции механических и основных элементов ксилемы

Древесинные волокна еще называются либриоформом. Это вытянутые в длину клетки, которые обладают утолщенными одревесеневшими стенками. Они выполняют опорную функцию, обеспечивающую прочность ксилемы.

Элементы основной ткани в ксилеме представлены древесинной паренхимой. Это клетки с одревесневшими оболочками, в которых располагаются простые поры. Однако в месте соединения клетки паренхимы с сосудом находится окаймленная пора, которая соединяется с его простой порой. Клетки древесинной паренхимы, в отличие от клеток сосудов, не пустые. Они обладают протопластами. Паренхима ксилемы выполняет резервную функцию — в ней запасаются питательные вещества.

Чем отличается ксилема разных растений?

Так как трахеиды в процессе эволюции возникли намного раньше, чем сосуды, эти проводящие элементы присутствуют и у низших наземных растений. Это споровые (папоротники, мхи, плауны, хвощи). Большинство голосеменных растений также обладают только трахеидами. Однако у некоторых голосеменных есть и сосуды (они присутствуют у гнетовых). Также, в порядке исключения, названные элементы присутствуют и у некоторых папоротников и хвощей.

А вот покрытосеменные (цветковые) растения все обладают и трахеидами, и сосудами.

Что такое флоэма?

Проводящая ткань данного вида еще называется лубом.

Основная часть флоэмы — ситовидные проводящие элементы. Также в структуре луба присутствуют механические элементы (флоэмные волокна) и элементы основной ткани (флоэмная паренхима).

Особенности проводящей ткани данного вида заключаются в том, что клетки ситовидных элементов, в отличие от проводящих элементов ксилемы, остаются живыми.

Строение ситовидных элементов

Существует два их вида: ситовидные клетки и ситовидные трубки. Первые вытянуты в длину и обладают заостренными концами. Они пронизаны сквозными отверстиями, через которые и происходит транспорт веществ. Ситовидные клетки более примитивны, чем многоклеточные ситовидные элементы. Они характерны для таких растений, как споровые и голосеменные.

У покрытосеменных растений проводящие элементы представлены ситовидными трубками, состоящими из множества клеток — члеников ситовидных элементов. Сквозные отверстия двух соседних клеток образуют ситовидные пластинки.

В отличие от ситовидных клеток, в упомянутых структурных единицах многоклеточных проводящих элементов отсутствуют ядра, однако они все равно остаются живыми. Важную роль в строении флоэмы покрытосеменных растений играют также клеки-спутницы, находятщиеся рядом с каждой клеткой-члеником ситовидных элементов. В спутницах есть как органоиды, так и ядра. В них происходит обмен веществ.

Учитывая то, что клетки флоэмы живые, эта проводящая ткань не может долго функционировать. У многолетних растений период ее жизни составляет три-четыре года, после чего клетки этой проводящей ткани отмирают.

Дополнительные элементы флоэмы

Кроме ситовидных клеток или трубок, в этой проводящей ткани также присутствуют элементы основной ткани и механические элементы. Последние представлены лубяными (флоэмными) волокнами. Они выполняют опорную функцию. Не все растения обладают флоэмными волокнами.

Элементы основной ткани представлены флоэмной паренхимой. Она, так же как и ксилемная паренхима, выполняет резервную роль. В ней запасаются такие вещества, как танниды, смолы и др. Особенно развиты эти элементы флоэмы у голосеменных растений.

Флоэма различных видов растений

У низших растений, таких как папоротники и мхи, она представлена ситовидными клетками. Такая же флоэма характерна и для большей части голосеменных растений.

Покрытосеменные растения обладают многоклеточными проводящими элементами: ситовидными трубками.

Структура проводящей системы растения

Ксилема и флоэма всегда располагаются рядом и образуют пучки. В зависимости от того, как два типа проводящей ткани располагаются друг относительно друга, различают несколько видов пучков. Наиболее часто встречаются коллатеральные. Они устроены таким образом, что флоэма лежит по одну сторону от ксилемы.

Также существуют концентрические пучки. В них одна проводящая ткань окружает другую. Они делятся на два вида: центрофлоэмные и центроксилемные.

Проводящая ткань корня обладает обычно радиальными пучками. В них лучи ксилемы отходят от центра, а флоэма находится между лучами ксилемы.

Коллатеральные пучки больше характерны для покрытосеменных растений, а концентрические — для споровых и голосеменных.

Заключение: сравнение двух типов проводящих тканей

В качестве вывода приведем таблицу, в которой сокращенно указаны основные данные о двух видах проводящих тканей растений.

Ссылка на основную публикацию
Adblock
detector