Astapro.ru

33 квадратных метра
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Отличительными признаками вторичных проводящих тканей являются

Отличительными признаками вторичных проводящих тканей являются

Ткань — группа клеток, структурно и функционально взаимосвязанных друг с другом, сходных по происхождению, строению и выполняющих определенные функции в организме.

Ткани возникли у высших растений в связи с выходом на сушу и наибольшей специализации достигли упокрытосеменных, у которых их выделяют до 80 видов. Важнейшие ткани растений:

Ткани могут быть простыми и сложными. Простые ткани состоят из одного вида клеток (например, колленхима, меристема), а сложные — из различных по строению клеток, выполняющих кроме основных и дополнительные функции (эпидерма, ксилема, флоэма и др.).

Образовательные ткани , или меристемы , являются эмбриональными тканями. Благодаря ним долго сохраняющейся способности к делению (некоторые клетки делятся в течение всей жизни) меристемы участвуют в образовании всех постоянных тканей и тем самым формируют растение, а также определяют его длительный рост.

Клетки образовательной ткани тонкостенные, многогранные, плотно сомкнутые, с густой цитоплазмой, с крупным ядром и очень мелкими вакуолями. Они способны делиться в разных направлениях.

По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов, что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру (вторичный рост) обеспечивается вторичными меристемами — камбием и феллоге-ном. По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркаляр-ные) и раневые (травматические) меристемы.

Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей —эпидермис, перидерму и корку.

Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов (рис. 8.1). Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют транспирацию и газообмен растения.

Перидерма — вторичная покровная ткань стеблей и корней, сменяющая эпидермис у многолетних (реже однолетних) растений (рис. 8.2.). Ее образование связано с деятельностью вторичной меристемы —феллогена (пробкового камбия), клетки которого делятся и дифференцируются в центробежном направлении (наружу) в пробку (феллему), а в центростремительном, (внутрь) — в слой живых паренхимных клеток (феллодерму). Пробка, феллоген и феллодерма составляют перидерму.

Рис. 8.1. Эпидерма листа различных растений: ахлорофитум; 6плющ обыкновенный: вгерань душистая; гшелковица белая; 1клетки эпидермы; 2замыкающие клетки устьиц; 3устьичная щель.

Рис 8.2. Перидерма стебля бузины (апоперечный разрез побега, бчечевички): Iвыполняющая ткань; 2остатки эпидермы; 3пробка (феллема); 4феллоген; 5феллодерма.

Клетки пробки пропитаны жироподобным веществом — суберином —и не пропускают воду и воздух, поэтому содержимое клетки отмирает и она заполняется воздухом. Многослойная пробка образует своеобразный чехол стебля, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в последней имеются особые образования —чечевички; это разрывы в пробке, заполненные рыхло расположенными клетками.

Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают, На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой для растения, чем пробка.

Проводящие ткани обеспечивают передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани — ксилему (древесину) и флоэму (луб).

Ксилема —это главная водопроводящая ткань высших сосудистых растений, обеспечивающая передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). Она также выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды) (рис. 8.3), древесинная паренхима и механическая ткань.

Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды.

Рис 8.3. Элементы ксилемы (а) и флоэмы (6): 1—5кольчатая, спиральная, лестничная и пористая (4, 5) трахеи соответственно; 6 — коль чатая и пористая трахеиды; 7ситовидная трубка с клеткой-спутницей.

Трахеи (сосуды) —это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность. В зависимости от характера утолщения оболочек различают трахеи кольчатые, спиральные, лестничные и др. (см. рис. 8.3).

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами (см. рис. 8.3), паренхимы и механической ткани. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поперечные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и сосуды, тянутся по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Читать еще:  Упражнения в воде для пресса

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы — проводящие пучки.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).

Рис. 8.4. Механические ткани: ауголковая колленхима; 6склеренхима; в -— склереиды из плодов алычи: 1цитоплазма, 2утолщенная клеточная стенка, 3поровые канальцы.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.

Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.

Основная ткань , или паренхима , состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические, проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму) и водоносную паренхиму (рис. 8.5).

Рис 8.5. Паренхимные ткани: 1—3хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4—запасающая (клетки с зернами крахмала); 5 — воздухоносная, или аэренхима.

Клетки ассимиляционной ткани содержат хлоропласты и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

В клетках запасающей паренхимы откладываются белки, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для накопления воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2—3 тыс. л воды). У водных и болотных растений развивается особый тип основной ткани — воздухоносная паренхима, или аэренхима . Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена

Проводящие ткани (ксилема и флоэма): строение, особенности, функции, виды

Проводящие ткани осуществляют функцию проведения воды и растворов различных питательных веществ по всему телу растения. Они состоят из ксилемы (древесины), проводящей воду и растворённые в ней вещества из корней, и флоэмы (луба), проводящей из листьев органические вещества.

Ксилема (древесина)

В состав ксилемы (рис. 12) входят проводящие элементы — сосуды и трахеиды, а также живые паренхимные клетки и механические волокна.

Трахеиды

Трахеиды представляют собой замкнутые удлинённые клетки с вытянутыми концами и с утолщёнными одревесневшими стенками, на которых имеются поры. Передвижение растворов происходит через поры. Кроме проводящей функции трахеиды несут механическую нагрузку. У папоротников и голосеменных трахеиды служат единственным проводящим элементом.

Сосуды (трахеи)

Сосуды, или трахеи, представляют собой трубки, состоящие из многих клеток, поперечные перегородки между которыми разрушаются (рис. 13). Боковые стенки их утолщаются и одревесневают, но в них остаются поры, через которые происходит передвижение веществ в горизонтальном направлении. По характеру утолщений стенок различают кольчатые, спиральные, лестничные, точечные и сетчатые сосуды. Кольчатые и спиральные сосуды эластичны, они могут вытягиваться, поэтому не препятствуют росту органов растений и появляются в них раньше других. Протопласты трахеид и сосудов отмирают.

Флоэма (луб)

Флоэма состоит из ситовидных трубок, клеток-спутниц, лубяной паренхимы и лубяных волокон.

Ситовидные трубки

Ситовидные трубки (рис. 14) состоят из живых клеток, поперечные перегородки между которыми пронизаны большим количеством сквозных канальцев, через них и происходит передвижение органических веществ. Канальцы собраны группами, которые называют ситовидными полями.

У некоторых растений (папоротников, голосеменных) ситовидные поля располагаются и на продольных стенках клеток. В процессе формирования ситовидной трубки из клеток меристемы ядра и тонопласт в них разрушаются, клеточный сок смешивается с цитоплазмой, при этом она становится проницаемой для раствора веществ. Функционируют ситовидные трубки у травянистых растений один вегетационный период, у деревьев и кустарников — 2 года (у некоторых 3-4 года).

Клетки-спутницы

Клетки-спутницы возникают одновременно с ситовидными трубками из одной меристематической клетки и осуществляют физиологические функции в тесном контакте с ними. Они менее вакуолизированы, сохраняют, митохондрии, ядро, ЭПР. Материал с сайта http://doklad-referat.ru

Читать еще:  Заговоры ванги деньги будут водится всегда

Лубяная паренхима

Ситовидные трубки окружены клетками лубяной паренхимы, в которых активно протекают обменные реакции и часто накапливаются запасные вещества.

Лубяные волокна

Механическую прочность флоэме придают лубяные волокна.

Биология

Ткани растений

Обложка урока взята с источника .

Дистанционное обучение — лучшее дополнение к школе

Протестируй дистанционное обучение у нашего партнера

Перейти

Мы рекомендуем Вам лучшие онлайн-курсы

Выбери для себя интересные онлайн-курсы

План урока:

Ткани — совокупность клеток с единым происхождением, функциями и строением. Ткани появились из-за потребностей вышедших на сушу растений.

Виды тканей растений

Ткани растений бывают простыми и сложными. Клетки в простых тканях выполняют одну основную функцию, а в сложных берут на себя дополнительные задачи. Примером простых тканей служит меристема, сложных — ксилема и флоэма.

Классификация по функциям и строению тканей растений:

Но это ещё не всё. Даже в рамках одного вида тканей клетки различаются, поэтому классификацию дополняют подвиды.


Классификация тканей Источник

Образовательная ткань

Образовательная ткань растений— родители: из них развиваются остальные ткани. Клетки недифференцированной ткани делятся множество раз и тем самым обеспечивают рост растения в длину и толщину.

Узнать клетки образовательной ткани не составляет труда: это скопления близко расположенных клеток с мелкими стенками и вакуолями и без запаса дополнительных веществ. Лишний груз этим клеткам не нужен, ведь их единственная функция — деление.

По топографической классификациимеристемы делят на:

Благодаря апикальным тканям растение растёт в длину, а благодаря латеральным — в толщину. Благодаря интеркалярным меристемам происходит рост у оснований междоузлий. Раневые тканиприходят на помощь там, где растение повреждено.


Схема распределения меристем Источник 1. Апикальная, 2. Латеральная, 3. Интеркалярная, 4. Раневая.

Основная ткань

Основная ткань растений — дом: между её клетками расположены другие ткани. Судя по названию, основная ткань составляет основу растений. Как части одного строения, клетки основной ткани выполняют разнообразные задачи, поэтому их делят на подвиды:

  1. Ассимиляционная (хлоренхима);
  2. Основная (типичная);
  3. Запасающая;
  4. Воздухоносная (аэренхима);
  5. Поглощающая.

В общем виде клетки этого вида ткани состоят из живых клеток с тонкими стенками. Далее строение зависит от выполняемой задачи.

Ассимиляционная паренхима отвечает за фотосинтез и газообмен: клетки по размеру средние, имеют много хлоропластов. Типичная ткань заполняет пустые места: в клетках нет хлорофилла. Запасающая паренхима хранит вещества: в клетках этой ткани откладываются крахмальные зёрна, белковые гранулы и липидные капли.Воздухоносная ткань есть у растений, которые живут в водных пространствах: клетки аэренхимы находятся на расстоянии друг от друга, имеют межклетники, которые заполнены воздухом. Поглощающая паренхима отвечает за всасывание воды через корневые волоски: клетки крупные, содержат в вакуолях специальное слизистое вещество.


Паренхима клубня картофеля Источник

Проводящая ткань

Проводящая ткань растений— лифт: по этим клеткам перемещается вода и разнообразные вещества. Если лифт движется вверх, его называют ксилемой, если вниз — флоэмой.

Дополнительная функция древесины заключается в опоре растения. Древесина образуется из клеток камбия и находится ближе к центральной части растения.

К составным частям ксилемы относят трахеиды, трахеи (сосуды), древесинные волокна и паренхима. Трахеиды и трахеи выполняют проводящую функцию, а волокна и паренхима — механическую.

Трахеиды — мёртвые клетки скошенной формы. У этих клеток есть одревесневшая оболочка, нет цитоплазмы. В стенках трахеид расположены поровые мембраны, через которые перемещается вода с растворёнными минеральными веществами. По трахеидам жидкость протекает медленно.

Трахеи —пустые трубки, которые разделены на членики. Эти клетки узкие и вытянутые с частично сохранёнными участками цитоплазмы. Боковые стенки члеников одревесневают,

а поперечные разрушаются и образуют сквозные проёмы — перфорации. Трахеи высокопроницаемы, поэтому по таким отверстиям вода перемещается быстрее, чем по поровым мембранам.

Второй тип проводящей ткани — флоэма.

Луб находится под корой.

Ситовидные трубки — скопление клеток, которые срастаются с помощью пластинок. Клетки ситовидных трубок живые, продолговатые, неодревесневшие. Ядро разрушается в начале формирования трубок. Клетки имеют стенки, в которых расположены мельчайшие отверстия, напоминающие сито. Дыры соседних клеток соединяют длинные жгуты цитоплазмы, через которые проходят вещества. Беспорядочный поток веществ регулируют клетки-спутницы, которые размещаются возле трубок. Также клетки-спутницы берут на себя другие функции: продукцию необходимых ферментов и энергии.

Ситовидные клетки есть у папоротникообразных и голосеменных. У этих клеток нет специальных клеток-спутниц.


Внутреннее строение стебля Источник

Покровная ткань

Покровная ткань растений— крыша и стены: эти клетки размещаются на протяжении поверхности растения.

Первичная ткань — эпидерма, которая покрывает листья и плоды. Клетки эпидермиса живые. Оболочка изгибистая, что обеспечивает прилегание клеток. Снаружи все клетки покрыты толстой кутикулой. Задачи эпидермиса сводятся к защите, регуляции газообмена через устьица и транспирации.

Вторичная ткань — перидерма, которая приходит на смену эпидерме. Клетки перидермы мёртвые, насыщенные жироподобным веществом — суберином. Перидерма состоит из феллогена (пробкового камбия), феллемы (пробки) и феллодермы (подпитывающей ткани). Феллоген, разрастаясь, синтезирует к поверхности феллему, а внутрь — феллодерму. Перидерма придаёт дополнительную защиту растению. Газообмен происходит через чечевички.

Третичная ткань — ритидом, который создаётся в результате отложения слоёв перидермы. Ритидом — группа мёртвых клеток, которая состоит из деформированных мёртвых участков коры и слоёв феллемы. Корка обеспечивает максимальную защиту.


Развитие перидермы Источник

Механическая ткань

Механическая ткань растений— каркас: эти клетки поддерживают форму растения. Благодаря прочным механическим тканям растения дают отпор разрыву. Такая ткань развивается из верхушечной меристемы, а также в результате работы камбия. Различают два вида механической ткани: колленхима и склеренхима.

Колленхима укрепляет молодые органы, располагаясь под кожицей. Клетки колленхимы живые, эластичные. Неровно утолщённая неодревеневшая клеточная стенка содержит пектин и гемицеллюлозу, что помогает клеткам растягиваться.

Читать еще:  Возможные причины недостаточной производительности винтового компрессора

Склеренхима обладает большей прочностью, поэтому обеспечивает осевую опору растения.

Волокна — длинные клетки с крупными оболочками, собранные в пучки. В ксилеме располагаются древесинные волокна, а во флоэме — лубяные.

Склереиды — различные по морфологии клетки с одревесневшими стенками. Склереиды бывают палочковидные, удлинённые и звёздчатые. Такие клетки образуют скорлупу и косточки.


Механическая ткань: А – каменистые клетки, Б – клетки колленхимы, В – волокна склеренхимы Источник

Выделительная ткань растений

Выделительная ткань — сточная труба: через эти клетки уходят продукты метаболизма. Различают ткани секреторные и экскреторные.

К экскреторным тканям относят железистые волоски, нектарники и гидатоды. Железистые волоски выделяют на поверхность минеральные соли, нектарники — нектар, а гидатоды — воду и соли. Процесс выделения гидатодами воды при низкой транспирации называется гуттацией.

В секреторных тканях продукты метаболизма накапливаются в отдельных вместилищах. Такие ткани бывают схизогенными и лизогенными. Схизогенные вместилища — межклетники, которые заполнены выделительными веществами. Лизогенные вместилища — скопления клеток, которые разрушаются после накопления веществ.

К выделительным тканям внутренней секреции относят смоляные каналы, идиобласты и млечники. Смоляные каналы накапливают смолу, идиобласты — танины, эфирные масла, а млечники — млечный сок.


Выделительные ткани Источник

Появление тканей у растений

В водной среде мягкие условия, поэтому водоросли имеют только клетки, а не развитые ткани. Потребность в организованных скоплениях клеток возникла, когда растительные организмы вышли в наземную среду. Первыми водные пространства покинули древние растения — псилофиты, у которых появилась важная проводящая ткань.

У мхов появляется единственная ткань — основная, основной задачей которой становится фотосинтез. Папоротники к паренхиме добавляют хорошо развитую проводящую ткань. У голосеменных развиваются все виды тканей: основная, проводящая, образовательная, покровная, механическая и выделительная. Ткани покрытосеменных растений достигают наивысшего развития.

Ткани растений

В биологии тканью называют группу клеток, имеющих сходное строение и происхождение, а также выполняющих одинаковые функции. У растений наиболее разнообразные и сложно устроенные ткани развились в процессе эволюции у покрытосеменных (цветковых). Органы растений обычно образованы несколькими тканями. Можно выделить шесть типов тканей растений: образовательную, основную, проводящую, механическую, покровную, секреторную. Каждая ткань включает подтипы. Между тканями, а также внутри них бывают межклетники — промежутки между клетками.

Образовательная ткань

Благодаря делению клеток образовательной ткани растение увеличивается в длину и толщину. При этом часть клеток образовательной ткани дифференцируется в клетки других тканей.

Клетки образовательной ткани достаточно мелкие, плотно прилегают друг к другу, имеют крупное ядро и тонкую оболочку.

Образовательная ткань в растениях находится в конусах нарастания корня (кончик корня) и стебля (верхушка стебля), бывает в основаниях междоузлий, также образовательная ткань составляет камбий (который обеспечивает рост стебля в толщину).

Паренхима, или основная ткань

К паренхиме относят несколько разновидностей тканей. Различают ассимиляционную (фотосинтезирующую), запасающую, водоносную и воздухоносную основную ткань.

Фотосинтезирующая ткань состоит из клеток, содержащих хлорофилл, т. е. зеленых клеток. Эти клетки имеют тонкие стенки, содержат большое количество хлоропластов. Основная их функция — фотосинтез. Ассимиляционная ткань составляет мякоть листьев, входит в состав коры молодых стеблей деревьев и стебли трав.

В клетках запасающей ткани накапливаются запасы питательных веществ. Эта ткань составляет эндосперм семян, входит в состав клубней, луковиц и др. Сердцевина стебля, внутренние клетки коры стебля и корня, сочный околоплодник также обычно состоят из запасающей паренхимы.

Водоносная паренхима свойственна лишь ряду растений, обычно засушливых мест обитания. В клетках этой ткани накапливается вода. Водоносная ткань может быть как в листьях (алоэ), так и в стебле (кактусы).

Воздухоносная ткань свойственна водным и болотным растениям. Ее особенностью является наличие большого количества межклетников, содержащих воздух. Это облегчает газообмен растению, когда он затруднен.

Проводящая ткань

Общей функцией различных проводящих тканей является проведение веществ от одних органов растения к другим. В стволах древесных растений клетки проводящей ткани расположены в древесине и лубе. Причем в древесине расположены сосуды (трахеи) и трахеиды, по которым перемещается водный раствор от корней, а в лубе — ситовидные трубки, по которым перемещаются органические вещества от фотосинтезирующих листьев.

Сосуды и трахеиды — это мертвые клетки. По сосудам водный раствор поднимается быстрее, чем по трахеидам.

Ситовидные трубки являются живыми, но безъядерными клетками.

Покровная ткань

К покровной ткани относится кожица (эпидермис), пробка, корка. Кожица покрывает листья и зеленые стебли, это живые клетки. Пробка состоит из мертвых клеток, пропитанных жироподобным веществом, не пропускающим воду и воздух.

Главные функции любой покровной ткани — это защита внутренних клеток растения от механического повреждения, высыхания, проникновения микроорганизмов, перепадов температуры.

Пробка является вторичной покровной тканью, так как возникает на месте кожицы у стеблей и корней многолетних растений.

Корка состоит из пробки и отмерших слоев основной ткани.

Механическая ткань

Для клеток механической ткани характерны сильно утолщенные одревесневшие оболочки. Функции механической ткани — это придание телу и органам растений прочности и упругости.

В стеблях покрытосеменных растений механическая ткань может располагаться одним целостным слоем или же отдельными тяжами, отстоящими друг от друга.

В листьях волокна механической ткани обычно располагаются рядом с волокнами проводящей ткани. Вместе они образуют жилки листа.

Секреторная, или выделительная ткань растений

Клетки секреторной ткани выделяют различные вещества, и поэтому функции у этой ткани разные. Выделительные клетки у растений выстилают смоляные и эфиромасличные ходы, образуют своеобразные железы и железистые волоски. К секреторной ткани принадлежат нектарники цветков.

Смолы выполняют защитную функцию при повреждении стебля растения.

Нектар привлекает насекомых-опылителей.

Бывают секреторные клетки, выводящие продукты обмена, например, соли щавелевой кислоты.

Ссылка на основную публикацию
Adblock
detector