Какие особенности имеют клетки проводящей ткани
Секреты тканей растений
Основное содержание.
- Классификация проводящей ткани.
- Характеристика ксилемы.
- Характеристика флоэмы.
В растительном организме, так же как и в организме животных имеется транспортные системы, обеспечивающие доставку питательных веществ по назначению. На сегодняшнем занятии разговор пойдёт о проводящих тканях растения.
Проводящие ткани – ткани, по которым происходит массовое передвижение веществ, возникли как неизбежное следствие приспособление к жизни на суше. От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по сосудам древесины (ксилемы), а нисходящий – по ситовидным элементам луба (флоэмы).
1. Восходящий ток веществ по сосудам ксилемы 2. Нисходящий ток веществ по ситовидным трубкам флоэмы
Клетки проводящей ткани характеризуются тем, что они вытянуты в длину и имеют форму трубочек с более или менее широким диаметром (в общем, напоминают сосуды у животных).
Существуют первичные и вторичные проводящие ткани.
Вспомним классификацию тканей на группы по форме клеток.
Ксилема и флоэма – это сложные ткани, состоящие из трёх основных элементов.
Таблица «Основные элементы ксилемы и флоэмы»
Проводящие элементы ксилемы.
Наиболее древними проводящими элементами ксилемы являются трахеиды (рис.1)– это вытянутые клетки с заостренными концами. Они дали начало древесинным волокнам.
Трахеиды имеют одревесневшую клеточную стенку с различной степенью утолщения, кольчатую, спиралевидную, точечную, пористую и т.д. форму (рис. 2). Фильтрация растворов происходит через поры, поэтому передвижение воды в системе трахеид совершается медленно.
Трахеиды встречаются у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных, являются существенными проводящими элементами ксилемы. Прочные стенки трахеид позволяют им выполнять не только водопроводящие функции, но и механические. Часто они являются единственными элементами, придающими органу прочность. Так, например, у хвойных деревьев в древесине отсутствует специальная механическая ткань, и механическая прочность обеспечивается трахеидами.
Длина трахеид колеблется от десятых долей миллиметра до нескольких сантиметров.
Рис. 2 Трахеиды и их расположение относительно друг друга
Рис. 2 Трахеиды и их расположение относительно друг друга
Сосуды – характерные проводящие элементы ксилемы покрытосеменных. Они представляют собой очень длинные трубки, образовавшиеся в результате слияния ряда клеток, соединяющихся «конец в конец». Каждая из клеток, образующих сосуд ксилемы, соответствует трахеиде и называется члеником сосуда. Однако членики сосуда короче и шире трахеид. Первая ксилема, появляющаяся в растении в процессе развития, носит название первичная ксилема; она закладывается в корнях и на верхушках побегов. Дифференцированные членики сосудов ксилемы появляются рядами на концах прокамбиальных тяжей. Сосуд возникает, когда соседние членики в данном ряду сливаются в результате разрушения перегородок между ними. Внутри сосуда сохраняются в виде ободков остатки разрушенных торцевых стенок.
Рис. 3 Расположение первичных и вторичных проводящих тканей в корне
Расположение первичных и вторичных проводящих тканей в стебле
Первые по времени образования сосуды (рис. 3) – протоксилема – закладываются на верхушке осевых органов, непосредственно под верхушечной меристемой, там, где окружающие их клетки ещё продолжают вытягиваться. Зрелые сосуды протоксилемы способны растягиваться одновременно с вытягиванием окружающих клеток, поскольку их целлюлозные стенки ещё не сплошь одревеснели – лигнин (особое органическое вещество, вызывающее одревесневание стенок клеток) откладывается в них кольцами или по спирали. Эти отложения лигнина позволяют трубкам сохранять достаточную прочность во время роста стебля или корня.
Рис. 4 утолщения клеточных стенок сосудов
С ростом органа появляются новые сосуды ксилемы, которые претерпевают более интенсивную лигнификацию и завершают своё развитие в зрелых частях органа, — формируется метаксилема. Тем временем самые первые сосуды протоксилемы растягиваются, а затем разрушаются. Зрелые сосуды метаксилемы не способны растягиваться и расти. Это мёртвые, жёсткие, полностью одревесневшие трубки. Если бы их развитие завершилось до того, как закончилось вытягивание окружающих живых клеток, то они бы очень сильно мешали этому процессу.
Утолщения клеточных стенок сосудов так же, как и у трахеид, бывают кольчатыми, спиральными, лестничными, сетчатыми и пористыми (рис. 4 и рис. 5).
Рис. 5 Типы перфорации сосудов
Длинные полые трубки ксилемы – идеальная система для поведения воды на большие расстояния с минимальными помехами. Так же как и в трахеидах, вода может переходить из сосуда в сосуд через поры или через неодревесневающие части клеточной стенки. Вследствие одревесневания клеточные стенки сосудов обладают высокой прочностью на разрыв, что тоже очень важно, потому что благодаря этому трубки не спадаются, когда вода движется в них под натяжением. Вторую свою функцию – механическую – ксилема также выполняет благодаря тому, что она состоит из ряда одревесневших трубок.
Проводящие элементы флоэмы. Ситовидные трубки образуются из прокамбия в первичной флоэме ( протофлоэма) и из камбия во вторичной флоэме ( метафлоэма). По мере того как растут окружающие её ткани, протофлоэма растягивается и значительная её часть отмирает, перестает функционировать. Метафлоэма созревает уже после того, как закончится растяжение.
Членики ситовидных трубок имеют весьма характерное строении. У них более тонкие клеточные стенки, состоящие из целлюлозы и пектиновых веществ, и этим они напоминают паренхимные клетки, однако их ядра при созревании отмирают, а от цитоплазмы остаётся только тонкий слой, прижатый к клеточной стенке. Несмотря на отсутствие ядра, членики ситовидных трубок остаются живыми, но их существование зависит от примыкающих к ним клеток-спутниц, развивающихся из одной с ними меристематической клетки (рис. 6).
Вопрос: — Какие клетки животных, являясь безъядерными, также остаются живыми?
Членик ситовидной трубки и его клетка-спутница составляют вместе одну функциональную единицу; у клетки-спутницы цитоплазма очень густая и отличается высокой активностью, на что указывает присутствие многочисленных митохондрий и рибосом. В структурном и функциональном отношении клетка-спутница и ситовидная трубка тесно связаны и совершенно необходимы для их функционирования: в случае гибели клеток-спутников погибают и ситовидные элементы.
Рис. 6 Ситовидная трубка и клетка спутница
Характерной чертой ситовидных трубок является наличие ситовидных пластинок (рис. 7). Эта их особенность сразу же бросается в глаза при рассматривании в световом микроскопе. Ситовидная пластинка возникает на месте соединения торцевых стенок двух соседних члеников ситовидных трубок. Вначале через клеточные стенки проходят плазмодесмы, но затем их каналы расширяются и образуют поры, так что торцевые стенки приобретают вид сита, через которое раствор перетекает из одного членика в другой. В ситовидной трубке ситовидные пластинки располагаются через определённые промежутки, соответствующие отдельным членикам этой трубки.
Рис. 7 Ситовидные пластинки ситовидных трубок
Основные понятия: Флоэма (протофлоэма, метафлоэма), ситовидные трубки, клетки-спутницы. Ксилема (протоксилема, метаксилема) трахеиды, сосуды.
Ответьте на вопросы:
- Чем представлена ксилема у голосеменных и покрытосеменных растений?
- В чём заключается отличие в строении флоэмы у данных групп растений?
- Объясните противоречие: сосны начинают вторичный рост рано и образуют много вторичной ксилемы, но растут медленней и уступают в росте лиственным породам.
- В чём заключается более упрощённое строение древесины хвойных?
- Почему сосуды являются более совершенной проводящей системой, чем трахеиды?
- Чем вызвана необходимость образования утолщений на стенках сосудов?
- В чём заключаются принципиальные различия между проводящими элементами флоэмы и ксилемы? С чем это связано?
- Какова функция клеток-спутниц?
Какие особенности имеют клетки проводящей ткани
1. Одинаковы ли форма и размеры клеток чешуи кожицы лука и листа элодеи?
Клетки кожицы лука и листа элодеи отличаются:
- по размеру: у кожицы лука клетки по размеру больше, чем у клеток листа элодеи;
- по форме: клетки листа элодеи более вытянутые, чем клетки кожицы лука;
- по цвету: в клетках кожицы лука находятся бесцветные пигменты, а в клетках листа элодеи — зелёные пластиды хлоропласты.
2. Какие различия в строении этих клеток вы отметили?
В цитоплазме клеток листа элодеи находится большое количество зелёных пластид — хлоропластов, а вот в клетках кожицы лука таких пластидов нет, там находятся только бесцветные пигменты.
Вопросы в конце параграфа
1. Что называют тканью?
Тканью называют совокупность клеток и межклеточного вещества, имеющая общее происхождение, строение и выполняющая определённые функции.
2. Какие виды тканей известны у растений?
У растений выделяют пять наиболее распространённых видов тканей:
3. Какое строение могут иметь клетки проводящей ткани?
Проводящие ткани образуются из живых и мёртвых клеток по виду напоминающих трубки. Такое строение помогает клеткам выполнять их основную функцию — перемещать воду и растворённые в ней минеральные и питательные вещества.
К проводящим тканям относятся:
- сосуды — последовательно соединённые мёртвые клетки, между которыми исчезли поперечные перегородки;
- ситовидные трубки — последовательно соединённые между собой безъядерные живые клетки с достаточно крупными отверстиями в поперечных стенках.
4. Какую функцию выполняют клетки образовательной ткани?
Главная функция образовательной ткани — создание новых клеток и тканей. Клетки образовательной ткани всегда небольшие по размеру и с тонкими стенками, но с крупным ядром.
Подумайте
Чем можно объяснить особенности строения клеток каждой ткани?
Особенности строения клеток каждого вида тканей объясняются выполняемыми данными тканями функциями:
- у покровных тканей, выполняющих защитную функцию, клетки отличаются толстыми и прочными оболочками;
- у механических тканей, придающих растениям прочность, клетки сильно вытянутые и имеют вид волокон;
- у проводящих тканей, предназначенных для транспортировки воды с растворёнными в ней питательными веществами, клетки напоминают трубки а поперечные межклеточные перегородки либо отсутствуют, либо имеют крупные отверстия;
- у основных тканей, которые в основном занимаются выработкой и запасанием питательных и других веществ, клетки насыщены различными пластидами и прочими элементами;
- у образовательных тканей, отвечающих за создание новых клеток и тканей, клетки маленькие, с тонкими оболочками и с крупным ядром.
Задания
Рассмотрите под микроскопом готовые микропрепараты различных растительных тканей, отметьте особенности строения их клеток. По результатам изучения микропрепаратов и текста параграфа заполните таблицу.
Какие особенности имеют клетки проводящей ткани
Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях. По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий, или транспирационный ток). По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веще ств по флоэме называют током ассимилятов.
Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.
Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом. Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия, вторичные – из вторичной латеральной меристемы – камбия. Вторичные проводящие ткани имеют более сложное строение, чем первичные.
Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей), механических элементов — древесинных волокон (волокон либриформа) и элементов основной ткани — древесинной паренхимы.
Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов – трахеиды и членики сосудов (рис. 3.26 ).
Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых члениками сосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации. По сосудам растворы передвигаются значительно легче, чем по трахеидам.
Рис. 3.26. Схема строения и сочетания трахеид (1) и члеников сосуда (2).
Трахеальные элементы в зрелом, функционирующем состоянии – мертвые клетки, не имеющие протопластов. Сохранение протопластов затрудняло бы передвижение растворов.
Сосуды и трахеиды передают растворы не только в вертикальном, но и в горизонтальном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. В то же время они имеют вторичные утолщения, придающие стенкам прочность. В зависимости от характера утолщений боковых стенок трахеальные элементы называются кольчатыми, спиральными, сетчатыми, лестничными и точечно-поровыми (рис. 3.27).
Рис. 3.27. Типы утолщения и поровости боковых стенок у трахеальных элементов : 1 – кольчатое, 2-4 – спиральные, 5 – сетчатое утолщения; 6 – лестничная, 7 – супротивная, 8 – очередная поровость.
Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной стенке посредством узкого выступа. При сближении утолщений и образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры. Эту серию (рис. 3.27 ) можно рассматривать как морфогенетический, эволюционный ряд.
Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином), что придает им дополнительную прочность, но ограничивает возможности роста в длину. Поэтому в онтогенезе органа сначала появляются еще способные растягиваться кольчатые и спиральные элементы, не препятствующие росту органа в длину. Когда рост органа прекращается, возникают элементы, неспособные к продольному растяжению.
В процессе эволюции первыми появились трахеиды. Они найдены у первых примитивных наземных растений. Сосуды появились значительно позже путем преобразования трахеид. Сосудами обладают почти все покрытосеменные растения. Споровые и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких споровых, как селагинелла, некоторых хвощей и папоротников, а также у немногих голосеменных (гнетовые). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных. Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.
Древесинная паренхима и древесинные волокна выполняют запасающие и опорные функции соответственно.
Флоэма (луб) состоит из проводящих — ситовидных — элементов, сопровождающих клеток (клеток-спутниц), механических элементов – флоэмных (лубяных) волокон и элементов основной ткани – флоэмной (лубяной) паренхимы.
В отличие от трахеальных элементов проводящие элементы флоэмы и в зрелом состоянии остаются живыми, а их клеточные стенки – первичными, неодревесневшими. На стенках ситовидных элементов имеются группы мелких сквозных отверстий – ситовидные поля, через которые сообщаются протопласты соседних клеток и происходит транспорт веществ. Различают два типа ситовидных элементов – ситовидные клетки и членики ситовидных трубок.
Ситовидные клетки являются более примитивными, они присущи споровым и голосеменным растениям. Ситовидная клетка – это одна клетка, сильно вытянутая в длину, с заостренными концами. Ее ситовидные поля рассеяны по боковым стенкам. Кроме того, ситовидные клетки имеют и другие примитивные признаки: они лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра.
У покрытосеменных растений транспорт ассимилятов осуществляют ситовидные трубки(рис. 3.28 ). Они состоят из многих отдельных клеток – члеников, расположенных один над другим. Ситовидные поля двух соседних члеников образуют ситовидную пластинку. Ситовидные пластинки имеют более совершенное строение, чем ситовидные поля (перфорации крупнее и их больше).
В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам). Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. Считается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему, осуществляющую ток ассимилятов.
Рис. 3.28. Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе : 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.
Длительность функционирования ситовидных трубок невелика. У однолетников и в надземных побегах многолетних трав – не более одного вегетационного периода, у кустарников и деревьев – не более трех-четырех лет. При отмирании живого содержимого ситовидной трубки, отмирает и клетка-спутница.
Лубяная паренхима состоит из живых тонкостенных клеток. В ее клетках часто накапливаются запасные вещества, а также смолы, танниды и др. Лубяные волокна играют опорную роль. Они присутствуют не у всех растений.
В теле растения ксилема и флоэма расположены рядом, образуя или слои, или обособленные тяжи, которые называют проводящимипучками. Различают несколько типов проводящих пучков (рис. 3.29 ).
Закрытые пучки состоят только из первичных проводящих тканей, они не имеют камбия и далее не утолщаются. Закрытые пучки характерны для споровых и однодольных растений. Открытые пучки имеют камбий и способны к вторичному утолщению. Они характерны для голосеменных и двудольных растений.
В зависимости от взаимного расположения флоэмы и ксилемы в пучке различают следующие типы. Наиболее обычны коллатеральные пучки, в которых флоэма лежит по одну сторону от ксилемы. Коллатеральные пучки могут быть открытыми (стебли двудольных и голосеменных растений) и закрытыми (стебли однодольных растений). Если с внутренней стороны от ксилемы располагается дополнительно тяж флоэмы, такой пучок называется биколлатеральным. Биколлатеральные пучки могут быть только открытыми, они характерны для некоторых семейств двудольных растений (тыквенные, пасленовые и др.).
Встречаются также концентрические пучки, в которых одна проводящая ткань окружает другую. Они могут быть только закрытыми. Если в центре пучка находится флоэма, а ксилема ее окружает, пучок называется центрофлоэмным, или амфивазальным. Такие пучки часто встречаются в стеблях и корневищах однодольных растений. Если в центре пучка располагается ксилема, и ее окружает флоэма, пучок называется центроксилемным, или амфикрибральным. Центроксилемные пучки обычны у папоротников.
Рис. 3.29. Типы проводящих пучков : 1 – открытый коллатеральный; 2 – открытый биколлатеральный; 3 – закрытый коллатеральный; 4 – концентрический закрытый центрофлоэмный; 5 – концентрический закрытый центроксилемный; К – камбий; Кс – ксилема; Ф – флоэма.
Многие авторы выделяют радиальные пучки. Ксилема в таком пучке располагается в виде лучей от центра по радиусам, а флоэма – между лучами ксилемы. Радиальный пучок – характерный признак корня первичного строения.
Проводящая ткань: особенности строения
Почти все многоклеточные живые организмы состоят из различных типов тканей. Это совокупность клеток, похожих по строению, объединенных общими функциями. Для растений и животных они неодинаковы.
Разнообразие тканей живых организмов
В первую очередь все ткани можно разделить на животные и растительные. Они бывают разными. Давайте рассмотрим их.
Какими могут быть животные ткани?
Животные ткани бывают таких типов:
Все они, кроме первой, делятся на виды. Мышечная ткань бывает гладкой, поперечно-полосатой и сердечной. Эпителиальная делится на однослойную, многослойную — в зависимости от количества слоев, а также на кубическую, цилиндрическую и плоскую — в зависимости от формы клеток. Соединительная ткань объединяет такие виды, как рыхлая волокнистая, плотная волокнистая, ретикулярная, кровь и лимфа, жировая, костная и хрящевая.
Разнообразие тканей растений
Растительные ткани бывают следующих типов:
- основная;
- покровная;
- проводящая ткань;
- механическая;
- образовательная.
Все типы растительных тканей объединяют несколько видов. Так, к основным относятся ассимиляционная, запасающая, водоносная и воздухоносная. Покровные ткани объединяют такие виды, как кора, пробка и эпидерма. К проводящей ткани относятся флоэма и ксилема. Механическая делится на колленхиму и склеренхиму. К образовательным относятся боковые, верхушечные и вставочные.
Все ткани выполняют определенные функции, и их строение соответствует роли, которую они выполняют. В этой статье будет рассмотрена подробнее проводящая ткань, особенности строения ее клеток. Также поговорим и о ее функциях.
Проводящая ткань: особенности строения
Эти ткани делятся на два вида: флоэму и ксилему. Так как они обе сформированы из одной и той же меристемы, то в растении они расположены рядом друг с другом. Однако строение проводящих тканей двух видов различается. Давайте поговорим подробнее о двух типах проводящих тканей.
Функции проводящих тканей
Их основная роль — транспорт веществ. Однако функции проводящих тканей, относящихся не к одному виду, различаются.
Роль ксилемы — проведение растворов химических веществ от корня вверх ко всем остальным органам растения.
А функция флоэмы — проведение растворов в обратном направлении — от определенных органов растения по стеблю вниз к корню.
Что такое ксилема?
Она также еще называется древесиной. Проводящая ткань данного вида состоит из двух разных проводящих элементов: трахеид и сосудов. Также в ее состав входят механические элементы — древесинные волокна, и основные элементы — древесинная паренхима.
Как устроены клетки ксилемы?
Клетки проводящей ткани делятся на два вида: трахеиды и членики сосудов. Трахеида — это очень длинная клетка с ненарушенными стенками, в которых присутствуют поры для транспорта веществ.
Второй проводящий элемент клетки — сосуд — состоит из нескольких клеток, которые называются члениками сосудов. Эти клетки расположены друг над другом. В местах соединения члеников одного и того же сосуда находятся сквозные отверстия. Они называются перфорациями. Эти отверстия необходимы для транспорта веществ по сосудам. Перемещение разнообразных растворов по сосудам происходит намного быстрее, чем по трахеидам.
Клетки обоих проводящих элементов являются мертвыми и не содержат протопластов (протопласты — это содержимое клетки, за исключением клеточной стенки, то есть это ядро, органоиды и клеточная мембрана). Протопласты отсутствуют, так как если бы они были в клетке, транспорт веществ по ней был бы очень затруднен.
По сосудам и трахеидам растворы могут транспортироваться не только вертикально, но и горизонтально — к живым клеткам или соседним проводящим элементам.
Стенки проводящих элементов имеют утолщения, которые придают клетке прочность. В зависимости от вида данных утолщений, проводящие элементы делятся на спиральные, кольчатые, лестничные, сетчатые и точечно-поровые.
Функции механических и основных элементов ксилемы
Древесинные волокна еще называются либриоформом. Это вытянутые в длину клетки, которые обладают утолщенными одревесеневшими стенками. Они выполняют опорную функцию, обеспечивающую прочность ксилемы.
Элементы основной ткани в ксилеме представлены древесинной паренхимой. Это клетки с одревесневшими оболочками, в которых располагаются простые поры. Однако в месте соединения клетки паренхимы с сосудом находится окаймленная пора, которая соединяется с его простой порой. Клетки древесинной паренхимы, в отличие от клеток сосудов, не пустые. Они обладают протопластами. Паренхима ксилемы выполняет резервную функцию — в ней запасаются питательные вещества.
Чем отличается ксилема разных растений?
Так как трахеиды в процессе эволюции возникли намного раньше, чем сосуды, эти проводящие элементы присутствуют и у низших наземных растений. Это споровые (папоротники, мхи, плауны, хвощи). Большинство голосеменных растений также обладают только трахеидами. Однако у некоторых голосеменных есть и сосуды (они присутствуют у гнетовых). Также, в порядке исключения, названные элементы присутствуют и у некоторых папоротников и хвощей.
А вот покрытосеменные (цветковые) растения все обладают и трахеидами, и сосудами.
Что такое флоэма?
Проводящая ткань данного вида еще называется лубом.
Основная часть флоэмы — ситовидные проводящие элементы. Также в структуре луба присутствуют механические элементы (флоэмные волокна) и элементы основной ткани (флоэмная паренхима).
Особенности проводящей ткани данного вида заключаются в том, что клетки ситовидных элементов, в отличие от проводящих элементов ксилемы, остаются живыми.
Строение ситовидных элементов
Существует два их вида: ситовидные клетки и ситовидные трубки. Первые вытянуты в длину и обладают заостренными концами. Они пронизаны сквозными отверстиями, через которые и происходит транспорт веществ. Ситовидные клетки более примитивны, чем многоклеточные ситовидные элементы. Они характерны для таких растений, как споровые и голосеменные.
У покрытосеменных растений проводящие элементы представлены ситовидными трубками, состоящими из множества клеток — члеников ситовидных элементов. Сквозные отверстия двух соседних клеток образуют ситовидные пластинки.
В отличие от ситовидных клеток, в упомянутых структурных единицах многоклеточных проводящих элементов отсутствуют ядра, однако они все равно остаются живыми. Важную роль в строении флоэмы покрытосеменных растений играют также клеки-спутницы, находятщиеся рядом с каждой клеткой-члеником ситовидных элементов. В спутницах есть как органоиды, так и ядра. В них происходит обмен веществ.
Учитывая то, что клетки флоэмы живые, эта проводящая ткань не может долго функционировать. У многолетних растений период ее жизни составляет три-четыре года, после чего клетки этой проводящей ткани отмирают.
Дополнительные элементы флоэмы
Кроме ситовидных клеток или трубок, в этой проводящей ткани также присутствуют элементы основной ткани и механические элементы. Последние представлены лубяными (флоэмными) волокнами. Они выполняют опорную функцию. Не все растения обладают флоэмными волокнами.
Элементы основной ткани представлены флоэмной паренхимой. Она, так же как и ксилемная паренхима, выполняет резервную роль. В ней запасаются такие вещества, как танниды, смолы и др. Особенно развиты эти элементы флоэмы у голосеменных растений.
Флоэма различных видов растений
У низших растений, таких как папоротники и мхи, она представлена ситовидными клетками. Такая же флоэма характерна и для большей части голосеменных растений.
Покрытосеменные растения обладают многоклеточными проводящими элементами: ситовидными трубками.
Структура проводящей системы растения
Ксилема и флоэма всегда располагаются рядом и образуют пучки. В зависимости от того, как два типа проводящей ткани располагаются друг относительно друга, различают несколько видов пучков. Наиболее часто встречаются коллатеральные. Они устроены таким образом, что флоэма лежит по одну сторону от ксилемы.
Также существуют концентрические пучки. В них одна проводящая ткань окружает другую. Они делятся на два вида: центрофлоэмные и центроксилемные.
Проводящая ткань корня обладает обычно радиальными пучками. В них лучи ксилемы отходят от центра, а флоэма находится между лучами ксилемы.
Коллатеральные пучки больше характерны для покрытосеменных растений, а концентрические — для споровых и голосеменных.
Заключение: сравнение двух типов проводящих тканей
В качестве вывода приведем таблицу, в которой сокращенно указаны основные данные о двух видах проводящих тканей растений.