Astapro.ru

33 квадратных метра
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проводящая ткань растений как называется

Проводящие ткани растений. Их строение, функции и месторасположение

Проводящая ткань — одна из растительных тканей, которая необходима для перемещения питательных веществ по организму. Это важный структурный компонент генеративных и вегетативных органов размножения.

Проводящая система являет собой совокупность клеток с межклеточными порами, а также паренхиматозных и передаточных клетки, которые вместе обеспечивают внутренний транспорт жидкости.

Эволюция проводящих тканей. Биологи предполагают, что появление сосудистой системы растений обусловлено переходом из воды на сушу. При этом образовалась подземная и надземная части: стебель и листья оказались на воздухе, а корень – в почве. Так появилась проблема передачи пластических и минеральных соединений. Благодаря появлению проводящих тканей, стала возможной циркуляция жидкости, минералов, АТФ по всему организму.

Особенности строения проводящей ткани растений

Строение проводящей ткани растений достаточно сложное, так как содержат разные структурные и функциональные элементы. Она включает ксилему (древесину) и флоэму (луб), по которым осуществляется движение воды в двух направлениях.

Ксилема (древесина)

К ксилеме относят следующие ткани:

  • Собственно проводящие (трахеиды и трахеи);
  • механические (древесинные волокна);
  • паренхиматозные.

Мертвыми элементами проводящей ткани растений могут быть сосуды (трахеи) и трахеиды, так как состоят из отмерших клеток.

Трахеи — представляют собой трубки с утолщенными оболочками. Они образовались из ряда вытянутых клеток, размещенных друг над другом. Продольные оболочки клеток одревесневают и происходит неравномерное их утолщение, а поперечные стенки разрушаются, формируя сквозные проемы. Трахеи длиной, в среднем, 10см, но у некоторых растений — до 2 (дуб) или 3-5м (тропические лианы).

Трахеиды — одноклеточные элементы веретеновидной формы с заострениями на концах. Длина их — около 1мм, но может быть 4-7мм (сосна). Так же, как и трахеи, это отмершие клетки с одревесневшими и утолщенными стенками. Утолщения имеют вид колец, спиралей, сетки. Трахеиды отличаются от трахей отсутствием отверстий, поэтому движение жидкости здесь идет сквозь поры. Они высокопроницаемы для растворенных в воде минералов.

Общность строения трахей и трахеид объясняется единой функцией. По трахеям и трахеидам идет восходящее движение минерализованной воды от корней в надземную часть растения. Подробнее про поглощение воды корнем.

Строение проводящей ткани растений

Флоэма (луб)

Флоэма также состоит из трех тканей:

  • Собственно проводящей (ситовидная система);
  • механической (лубяные волокна);
  • паренхиматозной.

Наиболее важные структурные единицы флоэмы это ситовидные трубки и клетки, которые объединены в единую систему посредством специальных полей и межклеточных контактов.

Ситовидные трубки — продолговатые, живые клетки, размеры их колеблются в пределах от 0,1 миллиметра до 2мм. Как и сосуды, они наиболее длинны у лиан. Продольные стенки их также утолщены, но остаются целлюлозными и не одревесневают. Поперечные оболочки продырявливаются, подобно ситу и называются ситовидными пластинками.

Органические продукты синтеза (энергия АТФ) перемещаются от листьев, к нижерасположенным частям, по разобщенным протопластам (смесь вакуолярного сока с цитоплазмой).

Цитоплазма клеток сохраняется, а ядро разрушается в самом начале формирования трубок. Даже при отсутствии ядра, клетки не отмирают, но их дальнейшая деятельность зависит от специфических клеток-спутниц. Они находятся рядом с ситовидными трубками. Это живые, тонкие, вытянутые по направлению ситовидной трубки клетки. Клетки спутницы являются своеобразной кладовой ферментов, которые через поры выделяются в членик ситовидной трубки и стимулируют перемещение органических веществ по ним.

Клетки-спутницы и ситовидные трубки тесно взаимосвязаны и не могут функционировать отдельно.

Ситовидные клетки не имеют специальных клеток-спутниц и не утрачивают ядра, ситовидные поля хаотично разбросаны на боковых стенках.

Проводящие ткани растений их строение и функции кратко излажены в таблице.

Проводящая ткань растений как называется

Ткань — группа клеток, структурно и функционально взаимосвязанных друг с другом, сходных по происхождению, строению и выполняющих определенные функции в организме.

Ткани возникли у высших растений в связи с выходом на сушу и наибольшей специализации достигли упокрытосеменных, у которых их выделяют до 80 видов. Важнейшие ткани растений:

Ткани могут быть простыми и сложными. Простые ткани состоят из одного вида клеток (например, колленхима, меристема), а сложные — из различных по строению клеток, выполняющих кроме основных и дополнительные функции (эпидерма, ксилема, флоэма и др.).

Образовательные ткани , или меристемы , являются эмбриональными тканями. Благодаря ним долго сохраняющейся способности к делению (некоторые клетки делятся в течение всей жизни) меристемы участвуют в образовании всех постоянных тканей и тем самым формируют растение, а также определяют его длительный рост.

Клетки образовательной ткани тонкостенные, многогранные, плотно сомкнутые, с густой цитоплазмой, с крупным ядром и очень мелкими вакуолями. Они способны делиться в разных направлениях.

По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов, что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру (вторичный рост) обеспечивается вторичными меристемами — камбием и феллоге-ном. По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркаляр-ные) и раневые (травматические) меристемы.

Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей —эпидермис, перидерму и корку.

Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов (рис. 8.1). Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют транспирацию и газообмен растения.

Перидерма — вторичная покровная ткань стеблей и корней, сменяющая эпидермис у многолетних (реже однолетних) растений (рис. 8.2.). Ее образование связано с деятельностью вторичной меристемы —феллогена (пробкового камбия), клетки которого делятся и дифференцируются в центробежном направлении (наружу) в пробку (феллему), а в центростремительном, (внутрь) — в слой живых паренхимных клеток (феллодерму). Пробка, феллоген и феллодерма составляют перидерму.

Рис. 8.1. Эпидерма листа различных растений: ахлорофитум; 6плющ обыкновенный: вгерань душистая; гшелковица белая; 1клетки эпидермы; 2замыкающие клетки устьиц; 3устьичная щель.

Рис 8.2. Перидерма стебля бузины (апоперечный разрез побега, бчечевички): Iвыполняющая ткань; 2остатки эпидермы; 3пробка (феллема); 4феллоген; 5феллодерма.

Клетки пробки пропитаны жироподобным веществом — суберином —и не пропускают воду и воздух, поэтому содержимое клетки отмирает и она заполняется воздухом. Многослойная пробка образует своеобразный чехол стебля, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в последней имеются особые образования —чечевички; это разрывы в пробке, заполненные рыхло расположенными клетками.

Читать еще:  Приемы нанесения декоративной штукатурки

Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают, На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой для растения, чем пробка.

Проводящие ткани обеспечивают передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани — ксилему (древесину) и флоэму (луб).

Ксилема —это главная водопроводящая ткань высших сосудистых растений, обеспечивающая передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). Она также выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды) (рис. 8.3), древесинная паренхима и механическая ткань.

Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды.

Рис 8.3. Элементы ксилемы (а) и флоэмы (6): 1—5кольчатая, спиральная, лестничная и пористая (4, 5) трахеи соответственно; 6 — коль чатая и пористая трахеиды; 7ситовидная трубка с клеткой-спутницей.

Трахеи (сосуды) —это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность. В зависимости от характера утолщения оболочек различают трахеи кольчатые, спиральные, лестничные и др. (см. рис. 8.3).

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами (см. рис. 8.3), паренхимы и механической ткани. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поперечные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и сосуды, тянутся по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы — проводящие пучки.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).

Рис. 8.4. Механические ткани: ауголковая колленхима; 6склеренхима; в -— склереиды из плодов алычи: 1цитоплазма, 2утолщенная клеточная стенка, 3поровые канальцы.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.

Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.

Основная ткань , или паренхима , состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические, проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму) и водоносную паренхиму (рис. 8.5).

Рис 8.5. Паренхимные ткани: 1—3хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4—запасающая (клетки с зернами крахмала); 5 — воздухоносная, или аэренхима.

Клетки ассимиляционной ткани содержат хлоропласты и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

В клетках запасающей паренхимы откладываются белки, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для накопления воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2—3 тыс. л воды). У водных и болотных растений развивается особый тип основной ткани — воздухоносная паренхима, или аэренхима . Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена

Проводящая ткань растений как называется

Обеспечивают передвижение веществ по растению: восходящего тока, несущего от корня к надземным частям воду и растворы минеральных веществ, и нисходящего тока, несущего от листьев ко всем остальным органам продукты фотосинтеза. Восходящий ток осуществляется по трахеальным элементам ксилемы — сосудам и трахеидам, а нисходящий ток — по ситовидным элементам флоэмы (ситовидным клеткам и ситовидным трубкам с клетками-спутницами).

Читать еще:  Паутинка на стены для выравнивания

Сосуды, или трахеи — наиболее прогрессивные и функционально эффективные элементы ксилемы. Образуются из вертикально расположенных меристематических клеток. При дифференциации они вытягиваются, их поперечные оболочки перфорируют (продырявливаются) или растворяются, продольные стенки местами утолщаются и одревесневают, в результате чего протопласт отмирает. Сформировавшиеся сосуды представляют собой членистые капилляры с пористыми оболочками или внутренними утолщениями в виде колец, спирали, лестницы (рис. 1.21). Форма, размеры члеников, тип перфораций и поровости, характер внутренних утолщений — систематические признаки. Первичные, про камбиальные сосуды узкие, с кольчатыми и спиральными утолщениями. Вторичные, камбиальные сосуды более широкие, по характеру утолщений — лестничные, точечные или сетчатые. Между всеми типами сосудов и отдельными члениками сосуда наблюдаются переходы: кольчато-спиральные, лестнично-точечные и др. Сосуды функционируют короткое время, так как их постепенно закупоривают тиллы — выросты паренхимы внутрь сосуда (рис. 1.21, 7).

Рис. 1.21. Сосуды: 1 — кольчатый; 2 — спиральные; 3 — лестничный; 4 — точечные; 5 — сетчатый; 6 — схема сочленения трубки сосуда; 7 — спиральный сосуд с тиллами (продольный и поперечный срезы)

Трахеиды — мертвые прозенхимные клетки с заостренными концами и одревесневшими клеточными оболочками. Сообщаются между собой и проводят вещества с помощью окаймленных пор. Если они отсутствуют, трахеида называется волокнистой и аналогично либриформу выполняет механическую функцию. Трахеиды, подобно сосудам, могут иметь внутри лестничные и спиральные утолщения (рис. 1.23).

Ситовидные трубки (рис. 1.22) образуются из ряда вертикально расположенных клеток прокамбия или камбия. Они вытягиваются, а поперечные оболочки перфорируют, образуя ситовидные пластинки. Через отверстия в них — ситовидные поля — сообщаются трубчатые клетки-членики. Оболочки ситовидных трубок целлюлозные, протопласт сохраняется, но ядра и тонопласт разрушаются, цитоплазма теряет избирательно-пропускную способность, раздражимость и другие свойства. Однако ситовидные трубки не отмирают, потому что рядом с ними находятся сопровождающие клетки, или клетки-спутницы, образующиеся при продольном делении члеников ситовидной т рубки. Это живые клетки с ядром, густой цитоплазмой и тонкой целлюлозной оболочкой. Они вырабатывают ферменты, поступающие в ситовидные трубки и обеспечивающие их жизнедеятельность. Осенью канальцы ситовидных пластинок закупориваются каллозой, которая весной может растворяться, и тогда работа ситовидных трубок возобновляется. Таким образом они функционирует несколько лет.

Рис. 1.22. Элементы флоэмы: 1 — 5 — развитие ситовидной трубки с клеткам спутницами (на продольных и поперечных срезах): 1 — клетки боковой меристемы; 2 — 4 —дифференцировка членика ситовидной трубки и клеток-спутниц; 5 — зрелая ситовидная трубка; 6 — стареющая ситовидная трубка с каллозой; 7 — элементы флоэмы на поперечном срезе; а — членик ситовидной трубки; 6 — ситовидная пластинка; в — клетки-спутницы; г — лубяные волокна; д — лубяная паренхима

Проводящие ткани в органах растения объединяются с другими элементами, образуя сложные ткани — ксилему и флоэму.

Ксилема, или древесина, состоит из первичных (прокамбиальных) и вторичных (камбиальных) элементов, выполняющих определенные функции: проводящие ткани — сосуды и трахеиды, механические — древесинные волокна, запасающие ткани — древесинная паренхима и заменяющие волокна (рис. 1.23).

Рис. 1.23. Элементы ксилемы: А — отдельные элементы с поверхности; Б — поперечный срез; 1 — членик сосуда; 2, 3 — сосуды пористый и спиральный; 4 — 6 — трахеиды; 4 — спиральная; 5 — с окаймленными порами; 6 — волокнистая; 7 — древесинное волокно; 8 — перегородчатый либриформ; 9 — заменяющее волокно; 10 — древесинная паренхима; 11 — лучевая паренхима

Флоэма, или луб (рис. 1.22), также включает элементы первичного (прокамбиального) и вторичного (камбиального) происхождения различного назначения: проводящие ткани — ситовидные клетки или ситовидные трубки с клетками-спутницами, механическая ткань — лубяные волокна, запасающая ткань — лубяная паренхима. Иногда механические волокна отсутствуют. Часто во флоэме образуются млечники или другие секреторные структуры.

Ксилема и флоэма обычно сопровождают друг друга, формируя проводящие, или сосудисто-волокнистые, пучки (рис. 1.24).

Рис. 1.24. Типы проводящих пучков: А — коллатеральный закрытый; Б — коллатеральный открытый; В — биколлатеральный; Г — радиальный; Д — центрофлоэмный; Е — центроксилемный; 1 — флоэма; 2 — ксилема; 3 — камбий; 4 — склеренхима

Проводящие пучки, образованные прокамбием, не имеющие камбия, называются закрытыми, а пучки с камбием — открытыми, поскольку могут длительно увеличиваться в размерах. В зависимости от расположения ксилемы и флоэмы различают пучки: коллатеральные, биколлатеральные, концентрические и радиальные.

Коллатеральные пучки характеризуются расположением флоэмы и ксилемы бок о бок, на одном радиусе. При этом в осевых органах флоэма занимает наружную часть пучка, ксилема — внутреннюю, а в листьях — наоборот. Коллатеральные пучки могут быть закрытыми (однодольные растения) и открытыми (двудольные).

Биколлатеральные пучки всегда открытые, с двумя участками флоэмы — внутренней и наружной, между которыми расположена ксилема. Камбий находится между наружной флоэмой и ксилемой. Биколлатеральные сосудисто-волокнистые пучки характерны представителям сем. тыквенные, пасленовые, кутровые и некоторые др.

Концентрические пучки закрытые. Они бывают центрофлоэмными, если ксилема окружает флоэму, и центроксилемными, если флоэма окружает ксилему. Ценгрофлоэмные пучкиформируются чаще у однодольных растений, центроксилемные — у папоротниковидных.

Радиальные пучки закрытые. В них флоэма и ксилема чередуются по радиусам. Радиальные пучки характерны для зоны всасывания корней, а также зоны проведения корней однодольных растений.

Биологическая библиотека — материалы для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2018-2020 Все права на дизайн сайта принадлежат С.Є.А.

Биология

Ткани растений

Обложка урока взята с источника .

Дистанционное обучение — лучшее дополнение к школе

Протестируй дистанционное обучение у нашего партнера

Перейти

Мы рекомендуем Вам лучшие онлайн-курсы

Выбери для себя интересные онлайн-курсы

План урока:

Ткани — совокупность клеток с единым происхождением, функциями и строением. Ткани появились из-за потребностей вышедших на сушу растений.

Виды тканей растений

Ткани растений бывают простыми и сложными. Клетки в простых тканях выполняют одну основную функцию, а в сложных берут на себя дополнительные задачи. Примером простых тканей служит меристема, сложных — ксилема и флоэма.

Классификация по функциям и строению тканей растений:

Но это ещё не всё. Даже в рамках одного вида тканей клетки различаются, поэтому классификацию дополняют подвиды.

Читать еще:  Жидкие обои технические характеристики


Классификация тканей Источник

Образовательная ткань

Образовательная ткань растений— родители: из них развиваются остальные ткани. Клетки недифференцированной ткани делятся множество раз и тем самым обеспечивают рост растения в длину и толщину.

Узнать клетки образовательной ткани не составляет труда: это скопления близко расположенных клеток с мелкими стенками и вакуолями и без запаса дополнительных веществ. Лишний груз этим клеткам не нужен, ведь их единственная функция — деление.

По топографической классификациимеристемы делят на:

Благодаря апикальным тканям растение растёт в длину, а благодаря латеральным — в толщину. Благодаря интеркалярным меристемам происходит рост у оснований междоузлий. Раневые тканиприходят на помощь там, где растение повреждено.


Схема распределения меристем Источник 1. Апикальная, 2. Латеральная, 3. Интеркалярная, 4. Раневая.

Основная ткань

Основная ткань растений — дом: между её клетками расположены другие ткани. Судя по названию, основная ткань составляет основу растений. Как части одного строения, клетки основной ткани выполняют разнообразные задачи, поэтому их делят на подвиды:

  1. Ассимиляционная (хлоренхима);
  2. Основная (типичная);
  3. Запасающая;
  4. Воздухоносная (аэренхима);
  5. Поглощающая.

В общем виде клетки этого вида ткани состоят из живых клеток с тонкими стенками. Далее строение зависит от выполняемой задачи.

Ассимиляционная паренхима отвечает за фотосинтез и газообмен: клетки по размеру средние, имеют много хлоропластов. Типичная ткань заполняет пустые места: в клетках нет хлорофилла. Запасающая паренхима хранит вещества: в клетках этой ткани откладываются крахмальные зёрна, белковые гранулы и липидные капли.Воздухоносная ткань есть у растений, которые живут в водных пространствах: клетки аэренхимы находятся на расстоянии друг от друга, имеют межклетники, которые заполнены воздухом. Поглощающая паренхима отвечает за всасывание воды через корневые волоски: клетки крупные, содержат в вакуолях специальное слизистое вещество.


Паренхима клубня картофеля Источник

Проводящая ткань

Проводящая ткань растений— лифт: по этим клеткам перемещается вода и разнообразные вещества. Если лифт движется вверх, его называют ксилемой, если вниз — флоэмой.

Дополнительная функция древесины заключается в опоре растения. Древесина образуется из клеток камбия и находится ближе к центральной части растения.

К составным частям ксилемы относят трахеиды, трахеи (сосуды), древесинные волокна и паренхима. Трахеиды и трахеи выполняют проводящую функцию, а волокна и паренхима — механическую.

Трахеиды — мёртвые клетки скошенной формы. У этих клеток есть одревесневшая оболочка, нет цитоплазмы. В стенках трахеид расположены поровые мембраны, через которые перемещается вода с растворёнными минеральными веществами. По трахеидам жидкость протекает медленно.

Трахеи —пустые трубки, которые разделены на членики. Эти клетки узкие и вытянутые с частично сохранёнными участками цитоплазмы. Боковые стенки члеников одревесневают,

а поперечные разрушаются и образуют сквозные проёмы — перфорации. Трахеи высокопроницаемы, поэтому по таким отверстиям вода перемещается быстрее, чем по поровым мембранам.

Второй тип проводящей ткани — флоэма.

Луб находится под корой.

Ситовидные трубки — скопление клеток, которые срастаются с помощью пластинок. Клетки ситовидных трубок живые, продолговатые, неодревесневшие. Ядро разрушается в начале формирования трубок. Клетки имеют стенки, в которых расположены мельчайшие отверстия, напоминающие сито. Дыры соседних клеток соединяют длинные жгуты цитоплазмы, через которые проходят вещества. Беспорядочный поток веществ регулируют клетки-спутницы, которые размещаются возле трубок. Также клетки-спутницы берут на себя другие функции: продукцию необходимых ферментов и энергии.

Ситовидные клетки есть у папоротникообразных и голосеменных. У этих клеток нет специальных клеток-спутниц.


Внутреннее строение стебля Источник

Покровная ткань

Покровная ткань растений— крыша и стены: эти клетки размещаются на протяжении поверхности растения.

Первичная ткань — эпидерма, которая покрывает листья и плоды. Клетки эпидермиса живые. Оболочка изгибистая, что обеспечивает прилегание клеток. Снаружи все клетки покрыты толстой кутикулой. Задачи эпидермиса сводятся к защите, регуляции газообмена через устьица и транспирации.

Вторичная ткань — перидерма, которая приходит на смену эпидерме. Клетки перидермы мёртвые, насыщенные жироподобным веществом — суберином. Перидерма состоит из феллогена (пробкового камбия), феллемы (пробки) и феллодермы (подпитывающей ткани). Феллоген, разрастаясь, синтезирует к поверхности феллему, а внутрь — феллодерму. Перидерма придаёт дополнительную защиту растению. Газообмен происходит через чечевички.

Третичная ткань — ритидом, который создаётся в результате отложения слоёв перидермы. Ритидом — группа мёртвых клеток, которая состоит из деформированных мёртвых участков коры и слоёв феллемы. Корка обеспечивает максимальную защиту.


Развитие перидермы Источник

Механическая ткань

Механическая ткань растений— каркас: эти клетки поддерживают форму растения. Благодаря прочным механическим тканям растения дают отпор разрыву. Такая ткань развивается из верхушечной меристемы, а также в результате работы камбия. Различают два вида механической ткани: колленхима и склеренхима.

Колленхима укрепляет молодые органы, располагаясь под кожицей. Клетки колленхимы живые, эластичные. Неровно утолщённая неодревеневшая клеточная стенка содержит пектин и гемицеллюлозу, что помогает клеткам растягиваться.

Склеренхима обладает большей прочностью, поэтому обеспечивает осевую опору растения.

Волокна — длинные клетки с крупными оболочками, собранные в пучки. В ксилеме располагаются древесинные волокна, а во флоэме — лубяные.

Склереиды — различные по морфологии клетки с одревесневшими стенками. Склереиды бывают палочковидные, удлинённые и звёздчатые. Такие клетки образуют скорлупу и косточки.


Механическая ткань: А – каменистые клетки, Б – клетки колленхимы, В – волокна склеренхимы Источник

Выделительная ткань растений

Выделительная ткань — сточная труба: через эти клетки уходят продукты метаболизма. Различают ткани секреторные и экскреторные.

К экскреторным тканям относят железистые волоски, нектарники и гидатоды. Железистые волоски выделяют на поверхность минеральные соли, нектарники — нектар, а гидатоды — воду и соли. Процесс выделения гидатодами воды при низкой транспирации называется гуттацией.

В секреторных тканях продукты метаболизма накапливаются в отдельных вместилищах. Такие ткани бывают схизогенными и лизогенными. Схизогенные вместилища — межклетники, которые заполнены выделительными веществами. Лизогенные вместилища — скопления клеток, которые разрушаются после накопления веществ.

К выделительным тканям внутренней секреции относят смоляные каналы, идиобласты и млечники. Смоляные каналы накапливают смолу, идиобласты — танины, эфирные масла, а млечники — млечный сок.


Выделительные ткани Источник

Появление тканей у растений

В водной среде мягкие условия, поэтому водоросли имеют только клетки, а не развитые ткани. Потребность в организованных скоплениях клеток возникла, когда растительные организмы вышли в наземную среду. Первыми водные пространства покинули древние растения — псилофиты, у которых появилась важная проводящая ткань.

У мхов появляется единственная ткань — основная, основной задачей которой становится фотосинтез. Папоротники к паренхиме добавляют хорошо развитую проводящую ткань. У голосеменных развиваются все виды тканей: основная, проводящая, образовательная, покровная, механическая и выделительная. Ткани покрытосеменных растений достигают наивысшего развития.

Ссылка на основную публикацию
Adblock
detector