Astapro.ru

33 квадратных метра
8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Воздушные прослойки в ограждающих конструкциях

Термическое сопротивление воздушных прослоек

Передача тепла через воздушную прослойку при разности температур на ее противоположных поверхностях происходит путем конвекции, излучения и теплопроводности (рис. 1.12).

Теплопроводность неподвижного воздуха очень мала и если бы в воздушных прослойках воздух находился в состоянии покоя, их термическое сопротивление было бы очень высоким. В действительности, в воздушных прослойках ограждающих конструкций воздух всегда движется, например, у более теплой поверхности вертикальных прослоек он перемещается вверх, а у холодной — вниз. В прослойках с движущимся воздухом количество тепла, передаваемого путем теплопроводности, очень мало по сравнению с теплопередачей путем конвекции.

По мере увеличения толщины воздушной прослойки количество тепла, передаваемого путем конвекции, возрастает, поскольку влияние трения воздушных струек о стенки уменьшается. Ввиду этого для воздушных прослоек не существует характерной для твердых материалов прямой пропорциональности между увеличением толщины слоя и значением его термического сопротивления.

При передаче тепла конвекцией от более теплой поверхности воздушной прослойки к более холодной, преодолевается сопротивление двух пограничных слоев воздуха, прилегающих к этим поверхностям, поэтому значение коэффициента, который можно было бы принять для свободной конвекции у какой-либо поверхности, уменьшается вдвое.

Количество лучистого тепла, передаваемого от более теплой поверхности к более холодной, не зависит от толщины воздушной прослойки; как говорилось ранее, оно определяется коэффициентом излучения поверхностей и разностью, пропорциональной четвертым степеням их абсолютных температур (1.3).

В общем виде поток тепла Q, передаваемый через воздушную прослойку, может быть выражен таким образом:

где αк — коэффициент теплообмена при свободной конвекции; δ — толщина прослойки, м; λ — коэффициент теплопроводности воздуха в прослойке, ккал·м·ч/град; αл — коэффициент теплообмена за счет излучения.

На основании экспериментальных исследований обычно трактуют величину коэффициента теплопередачи воздушной прослойки как вызванную теплообменом, происходящим путем конвекции и теплопроводности:

но зависящую преимущественно от конвекции (здесь λэкв — условная эквивалентная теплопроводное™ воздуха в прослойке); тогда при постоянном значении Δt термическое сопротивление воздушной прослойки Rв.п будет:

Явления конвективного теплообмена в воздушных прослойках зависят от их геометрической формы, размеров и направления потока тепла; особенности этого теплообмена могут быть выражены величиной безразмерного коэффициента конвекции ε, представляющего отношение эквивалентной теплопроводности к теплопроводности неподвижного воздуха ε=λэкв/λ.

Путем обобщения с помощью теории подобия большого количества экспериментальных данных М. А. Михеевым установлена зависимость коэффициента конвекции от произведения критериев Грасгофа и Прандтля, т. е.:

Коэффициенты теплопередачи αк‘, полученные из выражения

установленного на основе этой зависимости при tср=+10°, приведены для температурного перепада на поверхностях прослойки, Δt=10° в табл. 1.6.

Относительно небольшие величины коэффициентов передачи тепла через горизонтальные прослойки при потоке тепла сверху вниз (например, в цокольных перекрытиях отапливаемых зданий) объясняются малой подвижностью воздуха в таких прослойках; наиболее теплый воздух сосредоточивается у более нагретой верхней поверхности прослойки, затрудняя конвективный теплообмен.

Величина передачи тепла излучением αл, определяемая на основе формулы (1.12), зависит от коэффициентов излучения и температуры; для получения αл в плоских протяженных прослойках достаточно умножить приведенный коэффициент взаимооблучения С’ на соответствующий температурный коэффициент принятый по табл. 1.7.

Так, например, при С’=4,2 и средней температуре прослойки, равной 0°, получим αл=4,2·0,81=3,4 ккал/м 2 ·ч·град.

В летних условиях величина αл увеличивается, а термическое сопротивление прослоек уменьшается. Зимой, для прослоек, расположенных в наружной части конструкций, отмечается обратное явление.

Для применения в практических расчетах нормы строительной теплотехники ограждающих конструкций СНиП приводят значения термических сопротивлений замкнутых воздушных прослоек

указанные в табл. 1.8.

Величины Rв.пр, приведенные в таблице, соответствуют разности температур на поверхностях прослоек, равной 10°. При разности температур 8°, величина Rв.пр умножается на коэффициент 1,05, а при разности 6° — на 1,10.

Приведенные данные о термическом сопротивлении относятся к замкнутым плоским воздушным прослойкам. Под замкнутыми понимаются воздушные прослойки, ограниченные непроницаемыми материалами, изолированные от проницания воздуха извне.

Поскольку пористые строительные материалы воздухопроницаемы, к замкнутым могут быть отнесены, например, воздушные прослойки в конструктивных элементах из плотного бетона или других плотных материалов, практически не пропускающих воздуха при тех величинах разности давлений, которые типичны для эксплуатируемых зданий.

Экспериментальные исследования показывают, что термическое сопротивление воздушных прослоек в кирпичной кладке снижается примерно вдвое по сравнению с величинами, указанными в табл. 1.8. При недостаточном заполнении швов между кирпичами раствором (например, при выполнении работ в зимних условиях) воздухопроницаемость кладки может возрасти, а термическое сопротивление воздушных прослоек приблизиться к нулю. Достаточная защита конструкций с воздушными прослойками от воздухопроницания является совершенно необходимой для обеспечения требуемых теплофизических свойств ограждающих конструкций.

Иногда в бетонных или керамических блоках предусматривают прямоугольные пустоты небольшой длины, часто приближающиеся к квадратной форме. В таких пустотах передача лучистого тепла возрастает за счет дополнительного излучения боковых стенок. Прирост величины αл незначителен при отношении длины прослойки к ее толщине, равной 3:1 или более; в пустотах квадратной или круглой формы этот прирост достигает 20%. Эквивалентный коэффициент теплопроводности, учитывающий передачу тепла конвекцией и излучением в квадратных и круглых пустотах значительных размеров (70—100 мм) существенно возрастает, в связи с чем использование таких пустот в материалах с ограниченной теплопроводностью (0,50 ккал/м·ч·град и менее) не имеет смысла с точки зрения теплофизики. Применение квадратных или круглых пустот указанного размера в изделиях из тяжелых бетонов имеет главным образом экономическое значение (уменьшение веса); это значение утрачивается для изделий из легких и ячеистых бетонов, поскольку использование таких пустот может привести к понижению термического сопротивления ограждающих конструкций.

В противоположность этому, применение плоских тонких воздушных прослоек, особенно при многорядном их расположении в шахматном порядке (рис. 1.13), целесообразно. При однорядном размещении воздушных прослоек более эффективно их расположение в наружной части конструкции (если обеспечена ее воздухонепроницаемость), поскольку термическое сопротивление таких прослоек в холодный период года возрастает.

Применение воздушных прослоек в утепленных цокольных перекрытиях над холодными подпольями более рационально, чем в наружных стенах, поскольку передача тепла конвекцией в горизонтальных прослойках этих конструкций существенно уменьшается.

Теплофизическая эффективность воздушных прослоек в летних условиях (защита от перегрева помещений) снижается по сравнению с холодным периодом года; однако эта эффективность возрастает за счет использования прослоек, вентилируемых в ночное время наружным воздухом.

При проектировании полезно иметь в виду, что ограждающие конструкции с воздушными прослойками обладают меньшей влажностной инерцией по сравнению со сплошными. В сухих условиях конструкции с воздушными прослойками (вентилируемыми и замкнутыми) быстро подвергаются естественной сушке и приобретают дополнительные теплозащитные свойства за счет малой влажности материала; во влажных помещениях наоборот — конструкции с замкнутыми прослойками могут сильно переувлажняться, что связано с потерей теплофизических качеств и вероятностью преждевременного их разрушения.

Читать еще:  Нюансы применения гранулированного пеностекла

Из предыдущего изложения было видно, что передача тепла через воздушные прослойки в большой мере зависит рт излучения. Однако применение отражательной изоляции с ограниченной долговечностью (алюминиевой фольги, окраски и т. д.) для повышения термического сопротивления воздушных прослоек может быть целесообразным только в конструкциях сухих зданий с ограниченным сроком службы; в сухих капитальных зданиях дополнительный эффект отражательной изоляции также полезен, но следует учитывать, что даже при утрате ее отражательных качеств теплофизические свойства конструкций должны быть не менее требуемых с тем, чтобы обеспечить нормальную эксплуатацию конструкций.

В каменных и бетонных конструкциях с большой начальной влажностью (а также во влажных помещениях) использование алюминиевой фольги, утрачивает смысл, так как ее отражательные свойства могут быть быстро нарушены из-за коррозии алюминия во влажной щелочной среде. Применение отражательной изоляции наиболее эффективно в горизонтальных замкнутых воздушных прослойках при направлении потока тепла сверху вниз (цокольные перекрытия и т. д.), т. е. в том случае, когда конвекция почти отсутствует и передача тепла происходит в основном путем излучения.

Отражательной изоляцией достаточно покрыть только одну из поверхностей воздушной прослойки (более теплую, сравнительно гарантированную от эпизодического появления конденсата, быстро ухудшающего отражательные свойства изоляции).

Возникающие иногда предложения о теплофизической целесообразности разделения воздушных прослоек по толщине экранами из тонкой алюминиевой фольги в целях резкого уменьшения потока лучистого тепла не могут быть использованы для ограждающих конструкций капитальных зданий, поскольку малая эксплуатационная надежность такой теплозащиты не соответствует необходимой долговечности конструкций указанных зданий.

Расчетное значение термического сопротивления воздушной прослойки с отражательной изоляцией на более теплой поверхности повышается примерно вдвое по сравнению с величинами, указанными в табл. 1.8.

В южных районах конструкции с воздушными прослойками обладают достаточной эффективностью в отношении защиты помещений от перегрева; применение отражательной изоляции приобретает в этих условиях особенно большой смысл, поскольку превалирующая часть тепла передается в жаркое время года излучением. Целесообразно в целях повышения теплозащитных свойств ограждений и снижения их веса, экранировать наружные стены многоэтажных зданий лучеотражающими долговечными отделками (например, полированными алюминиевыми листами) с тем, чтобы под экранами была расположена воздушная прослойка, другая поверхность которой покрыта окрасочной или иной экономичной отражательной изоляцией.

Усиление конвекции в воздушных прослойках (например, за счет активного вентилирования их наружным воздухом, поступающим с затененных, озелененных и обводненных участков прилегающей территории) превращается для летнего периода в положительный теплофизический процесс, в противоположность зимним условиям, когда этот вид переноса тепла, в большинстве случаев, совершенно нежелателен.

Ограждения с воздушными прослойками

Одним из приемов, повышающих теплоизоляционные качества ограждений, является устройство воздушной прослойки. Ее используют в конструкциях наружных стен, перекрытий, окон, витражей. В стенах и перекрытиях ее применяют и для предупреждения переувлажнения конструкций.

Воздушная прослойка может быть герметичной или вентилируемой.

Рассмотрим теплопередачу герметичной воздушной прослойки.

Термическое сопротивление воздушной прослойки Ral нельзя определять как сопротивление теплопроводности слоя воздуха, так как перенос тепла через прослойку при разности температур на поверхностях происходит, в основном, путем конвекции и излучения (рис.3.14). Количество тепла,

передаваемого путем теплопроводности, мало, так как мал коэффициент теплопроводности воздуха (0,026 Вт/(м·ºС)).

В прослойках, в общем случае, воздух находится в движении. В вертикальных — он перемещается вверх вдоль теплой поверхности и вниз – вдоль холодной. Имеет место конвективный теплообмен, и его интенсивность возрастает с увеличением толщины прослойки, поскольку уменьшается трение воздушных струй о стенки. При передаче тепла конвекцией преодолевается сопротивление пограничных слоев воздуха у двух поверхностей, поэтому для расчета этого количества тепла коэффициент теплоотдачи αк следует уменьшить вдвое.

Для описания теплопереноса совместно конвекцией и теплопроводностью обычно вводят коэффициент конвективного теплообмена α’к, равный

где λa и δal – коэффициент теплопроводности воздуха и толщина воздушной прослойки, соответственно.

Этот коэффициент зависит от геометрической формы и размеров воздушных прослоек, направления потока тепла. Путем обобщения большого количества экспериментальных данных на основе теории подобия М.А.Михеев установил определенные закономерности для α’к . В таблице 3.5 в качестве примера приведены значения коэффициентов α’к , рассчитанные им при средней температуре воздуха в вертикальной прослойке t = + 10º С.

Коэффициенты конвективного теплообмена в вертикальной воздушной прослойке

Коэффициент конвективного теплообмена в горизонтальных воздушных прослойках зависит от направления теплового потока. Если верхняя поверхность нагрета больше, чем нижняя, движения воздуха почти не будет, так как теплый воздух сосредоточен вверху, а холодный – внизу. Поэтому достаточно точно будет выполняться равенство

Следовательно, конвективный теплообмен существенно уменьшается, а термическое сопротивление прослойки увеличивается. Горизонтальные воздушные прослойки эффективны, например, при их использовании в утепленных цокольных перекрытиях над холодными подпольями, где тепловой поток направлен сверху вниз.

Если поток тепла направлен снизу вверх, то возникают восходящие и нисходящие потоки воздуха. Передача тепла конвекцией играет существенную роль, и значение α’к возрастает.

Для учета действия теплового излучения вводится коэффициент лучистого теплообмена αл (Глава 2, п.2.5).

Пользуясь формулами (2.13), (2.17), (2.18) определим коэффициент теплообмена излучением αл в воздушной прослойке между конструктивными слоями кирпичной кладки. Температуры поверхностей: t1 = + 15 ºС, t2 = + 5 ºС; степень черноты кирпича: ε1= ε2= 0,9.

По формуле (2.13) найдем, что ε = 0,82. Температурный коэффициент θ = 0,91. Тогда αл = 0,82∙5,7∙0,91 = 4,25 Вт/(м 2 ·ºС).

Величина αл намного больше α’к (см табл.3.5), следовательно, основное количество тепла через прослойку переносится излучением. Для того, чтобы уменьшить этот тепловой поток и увеличить сопротивление теплопередаче воздушной прослойки, рекомендуют использовать отражательную изоляцию, то есть покрытие одной или обеих поверхностей, например, алюминиевой фольгой (так называемое «армирование»). Такое покрытие обычно устраивают на теплой поверхности, чтобы избежать конденсации влаги, ухудшающей отражательные свойства фольги. «Армирование» поверхности уменьшает лучистый поток примерно в 10 раз.

Рекомендуется располагать воздушные прослойки ближе к наружной стороне ограждения, так как при этом понижается температура, а значит, θ и αл .

Термическое сопротивление герметичной воздушной прослойки при постоянной разности температур на ее поверхностях определяется по формуле

. (3.24)

Термическое сопротивление замкнутых воздушных прослоек

Значения Ral для замкнутых плоских воздушных прослоек приведены в таблице 3.6. К ним можно отнести, например, прослойки между слоями из плотного бетона, который практически не пропускает воздух. Экспериментально показано, что в кирпичной кладке при недостаточном заполнении швов между кирпичами раствором имеет место нарушение герметичности, то есть проникновение наружного воздуха в прослойку и резкое снижение ее сопротивления теплопередаче.

Согласно СП 23-101-2004 рекомендуется применять невентилируемые воздушные прослойки в стенах — толщиной не менее 40 мм (при устройстве отражательной теплоизоляции – 10 мм).

Читать еще:  Установка поддона для душа на кирпичи

При покрытии одной или обеих поверхностей прослойки алюминиевой фольгой ее термическое сопротивление следует увеличивать в два раза.

В настоящее время широкое распространение получили стены с вентилируемой воздушной прослойкой (стены с вентилируемым фасадом). Навесной вентилируемый фасад – это конструкция, состоящая из материалов облицовки и подоблицовочной конструкции, которая крепится к стене таким образом, чтобы между защитно-декоративной облицовкой и стеной оставался воздушный промежуток. Для дополнительного утепления наружных конструкций между стеной и облицовкой устанавливается теплоизоляционный слой, так что вентиляционный зазор оставляется между облицовкой и теплоизоляцией.

Схема конструкции вентилируемого фасада показана на рис.3.15. Согласно СП 23-101 толщина воздушной прослойки должна быть в пределах от 60 до 150 мм.

Слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью, в теплотехническом расчете не учитываются. Следовательно, термическое сопротивление наружной облицовки не входит в сопротивление теплопередаче стены, определяемое по формуле (3.6). Как отмечалось в п.2.5, коэффициент теплоотдачи наружной поверхности ограждающей конструкции с вентилируемыми воздушными прослойками αext для холодного периода составляет 10,8 Вт/(м 2 · ºС).

Конструкция вентилируемого фасада обладает рядом существенных преимуществ. В п.3.2 сравнивались распределения температур в холодный период в двухслойных стенах с внутренним и наружным расположением утеплителя (рис.3.4). Стена с наружным утеплением является более

«теплой», так как основной перепад температур происходит в теплоизоляционном слое. Не происходит образования конденсата внутри стены, не ухудшаются ее теплозащитные свойства, не требуется дополнительной пароизоляции (глава 5).

Воздушный поток, возникающей в прослойке из-за перепада давления, способствует испарению влаги с поверхности утеплителя. Следует отметить, что значительной ошибкой является применение пароизоляции на наружной поверхности теплоизоляционного слоя, так как она препятствует свободному отводу водяного пара наружу.

Приложение Л (рекомендуемое). Методика теплофизического расчета навесных фасадных систем с вентилируемой воздушной прослойкой

Методика
теплофизического расчета навесных фасадных систем (НФС) с вентилируемой воздушной прослойкой

Л.1 Состав и последовательность расчета

В настоящем разделе приводится методика теплотехнических расчетов, позволяющая определить параметры теплового и влажностного режима стен с НФС.

Теплотехнический расчет состоит из:

подбора толщины утеплителя для стены с НФС, минимально необходимой для удовлетворения нормативным требованиям по сопротивлению теплопередаче;

расчета влажностного режима конструкции и проверки влажности материалов на удовлетворение нормативным требованиям;

уточнении характеристик материалов с учетом их средней влажности в расчетный период;

расчета воздухообмена в воздушной прослойке;

проверки достаточности количества удаляемой из воздушной прослойки влаги в расчетный период;

расчете требуемой величины сопротивления воздухопроницанию стены.

Л.2 Методика расчета

Л.2.1 Определяется требуемое сопротивление теплопередаче исходя из расчетных климатических характеристик района строительства и расчетных значений температуры проектируемого здания.

Л.2.2 Определяется предварительная толщина слоя теплоизоляции (Л.3).

Л.2.3 Из конструктивных соображений назначается толщина вентилируемой воздушной прослойки.

Л.2.4 С учетом этажности здания и района строительства определяется скорость движения воздуха в воздушной прослойке (Л.4).

Л.2.5 Определяется влажностный режим рассматриваемой конструкции (Л.5).

Л.2.6 По результатам п. 5 при необходимости корректируются или добавляются слои пароизоляции и вносятся изменения в облицовочный слой конструкции.

Л.2.7 Рассчитывается парциальное давление водяного пара на выходе из воздушной прослойки (Л.6).

Л.2.8 По результатам п. 7 проверяется возможность выпадения конденсата в воздушной прослойке и при необходимости корректируются толщина воздушной прослойки и зазор между плитками облицовки (Л.6).

Л.2.9 Рассчитывается требуемая величина сопротивления воздухопроницанию стены, достаточное чтобы фильтрация воздуха не нарушала теплового и влажностного состояния стены (Л.7).

Л.2.10 С учетом всех корректировок конструкции рассчитывается приведенное сопротивление теплопередаче стены (Л.8).

Л.3 Определение минимально необходимой толщины утеплителя фасадных систем с вентилируемой воздушной прослойкой

Далее предполагается, что теплозащитные и геометрические характеристики всех элементов стены с НФС известны. В случае отсутствия каких-либо данных их следует определять в соответствии с Е.3, Е.4.

Толщина теплоизоляционного слоя определяется по формуле

— требуемое сопротивление теплопередаче стены, , определяемое в соответствии с 5.2;

— толщина теплоизоляционного слоя, м;

— коэффициент теплопроводности утеплителя, ;

— толщина конструкционного слоя, м;

— коэффициент теплопроводности материала конструкционного слоя, ;

Л.4 Определение параметров воздухообмена в воздушной прослойке

Движение воздуха в вентилируемой прослойке осуществляется за счет гравитационного (теплового) и ветрового напора. В случае расположения приточных и вытяжных отверстий на разных стенах скорость движения воздуха в прослойке может определяться по следующей формуле

где , — аэродинамические коэффициенты на разных стенах здания, по СП 20.13330;

— скорость движения наружного воздуха, м/с;

K — коэффициент учета изменения скорости потока по высоте по СП 20.13330;

h — разности высот от входа воздуха в прослойку до его выхода из нее, м;

, — средняя температура воздуха в прослойке и температура наружного воздуха, °С;

— сумма коэффициентов местных сопротивлений;

При расположении приточных и вытяжных отверстий воздушной прослойки на одной стороне здания, принимается и формула (Л.2) упрощается

В формулах (Л.2) и (Л.3) используется средняя температура воздуха в прослойке , которая в свою очередь зависит от скорости движения воздуха в прослойке

где — предельная температура воздуха в прослойке, °С; (Л.5)

условная высота, на которой температура воздуха в прослойке отличается от предельной температуры в е раз ( ) меньше, чем отличалась при входе в прослойку, м;

— удельная теплоемкость воздуха;

— средняя плотность воздуха в прослойке;

— термическое сопротивление стены от воздушной прослойки до наружного воздуха, ;

— термическое сопротивление облицовочной плитки, .

Для расчета в качестве берется либо требуемое сопротивление теплопередаче из Л.3, либо приведенное сопротивление теплопередаче стены из Л.7 (в случае если принятая в проекте толщина утеплителя более чем на 20% отличается от минимально допустимой по Л.3).

Коэффициент теплоотдачи равен сумме конвективного и лучистого коэффициентов теплоотдачи .

Конвективный коэффициент теплоотдачи определяется по формуле

Лучистый коэффициент теплоотдачи определяется по формуле

где — коэффициент излучения абсолютно черного тела, , равный 5,77;

, — коэффициент излучения поверхностей, , в случае отсутствия данных по применяемым материалам принимаются равными 4,4 для минеральной ваты, 5,3 для неметаллической облицовки, 0,5 для облицовки полированным (со стороны прослойки) металлом;

— температурный коэффициент, который определяется по формуле

В процессе расчетов температура прослойки изменяется, но температурный коэффициент при этом изменяется слабо. Поэтому он находится один раз в начале расчетов для температуры .

Температура и скорость движения воздуха в прослойке находятся методом итераций: по формуле (Л.4) определяется средняя температура воздуха в прослойке с коэффициентом теплообмена в прослойке , затем по формуле (Л.2) или (Л.3) определяется средняя скорость движения воздуха в прослойке при полученной температуре, пересчитывается коэффициент теплообмена в прослойке, пересчитывается , по формуле (Л.4) определяется средняя температура воздуха в прослойке для скорости движения воздуха в прослойке, полученной на предыдущем шаге и т.д. На первом шаге средняя скорость движения воздуха в прослойке принимается равной 0 м/с. Шаги итерации продолжаются пока разница между скоростями воздуха на соседних шагах не станет меньше 5%.

Читать еще:  Установка металлического поддона для душа на кирпичи

В результате расчета находятся температура и скорость движения воздуха в прослойке, а также коэффициент теплообмена в прослойке .

Л.5 Расчет влажностного режима наружных стен с НФС с вентилируемой воздушной прослойкой

Для определения таких характеристик конструкции, как долговечность и расчетная теплопроводность, рассчитывают влажностный режим конструкции в многолетнем цикле эксплуатации (нестационарный влажностный режим). В наружных граничных условиях учитывают сопротивление паропроницанию ветрозащиты и наружной облицовки, а также воздухообмен в воздушной прослойке.

Результатом расчета является распределение влажности по толщине конструкции в любой момент времени ее эксплуатации, по которому определяют эксплуатационную влажность материалов конструкции.

По результатам расчета устанавливают соблюдение двух требований к конструкции.

Максимальная влажность утеплителя не должна превышать критической величины, которую принимают равной сумме — расчетной влажности материала для условий эксплуатации Б для применяемого утеплителя и — предельно допустимого приращения влажности материала по таблице 10.

Средняя влажность утеплителя и основания в месяц наибольшего увлажнения не должна превышать расчетную влажность материала для условий эксплуатации.

Если для какого-либо из слоев конструкции требования к влажностному режиму стены не выполняются рекомендуется усиливать внутреннюю штукатурку, или увеличивать воздухообмен в воздушной прослойке, или уменьшать сопротивление паропроницанию ветрозащиты.

Дополнительным результатом расчета нестационарного влажностного режима является величина потока водяного пара из конструкции в воздушную прослойку в наиболее холодный месяц.

Л.6 Расчет влажности воздуха на выходе из вентилируемой воздушной прослойки

Давление водяного пара в воздушной прослойке определяется балансом пришедшей из конструкции в прослойку и ушедшей из прослойки наружу влаги. Расчет проводится для наиболее холодного месяца. Решение уравнения баланса описывается формулой

где — парциальное давление водяного пара в воздушной прослойке, Па;

— предельное парциальной давление водяного пара в прослойке, Па;

— условная высота, на которой парциальное давление водяного пара в прослойке отличается от предельного в е раз ( ) меньше, чем отличалось при входе в прослойку, м;

— парциальное давление водяного пара наружного воздуха, Па;

— сопротивление паропроницанию облицовки фасада, ;

k — коэффициент, определяемый по формуле , ;

— удельный поток пара из конструкции в воздушную прослойку, , определяется по результатам, Л.5.

Величина сравнивается с давлением насыщенного водяного пара при температуре воздуха, равной , и если , то принимаются меры по улучшению влажностного режима воздушной прослойки: увеличивается ширина воздушной прослойки, уменьшается высота непрерывной воздушной прослойки (устанавливаются рассечки вентилируемой прослойки), увеличивается ширина зазора между плитками облицовки.

В случае разделения вентилируемой прослойки рассечками следует предусматривать продухи для выхода воздуха из нижней части прослойки и забора воздуха в верхнюю часть прослойки. По возможности следует препятствовать смешиванию выбрасываемого и забираемого воздуха.

Л.7 Расчет требуемой величины сопротивления воздухопроницанию стены с НФС с вентилируемой воздушной прослойкой

Требуемая воздухопроницаемость стены с облицовкой на относе, , определяется по формуле

где Г — параметр получаемый из таблицы Л.1;

— полное сопротивление паропроницанию стены, .

Таблица Л.1 — Значения параметра Г для различных значений параметров D и

Проектирование бань | Totalarch

Вы здесь

Теплоизолирующая способность воздушных прослоек

Зазоры, доступные потокам воздуха, являются продухами, ухудшающими теплоизоляционные характеристики стен. Зазоры же замкнутые (так же как закрытые поры вспененного материала) являются теплоизолирующими элементами. Ветронепродуваемые пустоты широко применяются в строительстве для снижения теплопотерь через ограждающие конструкции (щели в кирпичах и блоках, каналы в бетонных панелях, зазоры в стеклопакетах и т. п.). Пустоты в виде непродуваемых воздушных прослоек используются и в стенах бань, в том числе каркасных. Эти пустоты зачастую являются основными элементами теплозащиты. В частности, именно наличие пустот с горячей стороны стены позволяет использовать легкоплавкие пенопласты (пенополистирол и пенополиэтилен) в глубинных зонах стен высокотемпературных бань.

В то же время пустоты в стенах являются самыми коварными элементами. Стоит в малейшей степени нарушить ветроизоляцию, и вся система пустот может стать единым продуваемым выхолаживающим продухом, выключающим из системы теплоизоляции стен все внешние теплоизоляционные слои. Поэтому пустоты стараются делать небольшими по размеру и гарантированно изолируют друг от друга.

Использовать понятие теплопроводности воздуха (а тем более использовать ультранизкое значение коэффициента теплопроводности неподвижного воздуха 0,024 Вт/м град) для оценки процессов теплопередачи через реальный воздух невозможно, поскольку воздух в крупных пустотах является крайне подвижной субстанцией. Поэтому на практике для теплотехнических расчётов процессов передачи тепла даже через условно «неподвижный» воздух применяют эмпирические (опытные, экспериментальные) соотношения. Чаще всего (в простейших случаях) в теории теплопередачи считается, что тепловой поток из воздуха на поверхность тела в воздухе равен Q = α∆Т, где α — эмпирический коэффициент теплопередачи «неподвижного» воздуха, ∆Т — разность температур поверхности тела и воздуха. В обычных условиях жилых помещений коэффициент теплопередачи равен ориентировочно α = 10 Вт/м² град. Именно этой цифры мы будем придерживаться при оценочных расчётах прогрева стен и тела человека в бане. При помощи потоков воздуха со скоростью V (м/сек), тепловой поток увеличивается на величину конвективной составляющей Q=βV∆T, где β примерно равен 6 Вт•сек/м³•град. Все величины зависят от пространственной ориентации и шероховатости поверхности. Так, по действующим нормам СНиП 23-02-2003 коэффициент теплопередачи от воздуха к внутренним поверхностям ограждающих конструкций принимается равным 8,7 Вт/м² град для стен и гладких потолков со слабо выступающими рёбрами (при отношении высоты рёбер «h» к расстоянию «а» между гранями соседних рёбер h/a 0,3); 8,0 Вт/м² град для окон и 9,9 Вт/м² град для зенитных фонарей. Финские специалисты принимают коэффициент теплопередачи в «неподвижном» воздухе сухих саун равным 8 Вт/м² град (что в пределах ошибок измерений совпадает с принимаемым нами значением) и 23 Вт/м² град при наличии потоков воздуха со скоростью в среднем 2 м/сек.

Столь малое значение коэффициента теплопередачи в условно «неподвижном» воздухе α = 10 Вт/м² град соответствует понятию воздуха как теплоизолятора и объясняет необходимость использования высоких температур в саунах для быстрого согрева тела человека. Применительно же к стенам это означает, что при характерных теплопотерях через стены бани (50- 200) Вт/м² разница температур воздуха в бане и температур внутренних поверхностей стен бани может достигать (5-20)°С. Это очень большая величина, часто никак и никем не учитывающаяся. Наличие в бане сильной конвекции воздуха позволяет снизить перепад температуры вдвое. Отметим, что столь высокие перепады температур, характерные для бань, недопустимы в жилых помещениях. Так, нормируемый в СНиП 23-02-2003 температурный перепад между воздухом и стенами не должен превышать 4°С в жилых помещениях, 4,5°С в общественных и 12°С в производственных. Более высокие перепады температур в жилых помещениях неминуемо приводят к ощущениям холода от стен и выпадению росы на стенах.

Ссылка на основную публикацию
Adblock
detector