Astapro.ru

33 квадратных метра
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчет предела огнестойкости железобетонной плиты перекрытия

Расчет предела огнестойкости железобетонной плиты перекрытия

Статья опубликована в издании «Бетон и железобетон – пути развития. Научные труды 2-ой Всероссийской (Международной) крнференции по бетону и железобетону. 5-9 сентября 2005 г. Москва; В 5 томах. НИИЖБ 2005, Том 2. Секционные доклады. Секция «Железобетонные конструкции зданий и сооружений»., 2005.»

Рассмотрим расчет предела огнестойкости безбалочного перекрытия на примере, который достаточно часто встречается в практике строительства. Безбалочное железобетонное перекрытие имеет толщину 200 мм из бетона класса при сжатии В25, армированного сеткой с ячейками 200х200 мм из арматуры класса А400 диаметром 16 мм с защитным слоем 33 мм (до центра тяжести арматуры) у нижней поверхности перекрытия и А400 диаметром 12 мм с защитным слоем 28 мм (до ц. т.) у верхней поверхности. Расстояние между колоннами 7м. В рассматриваемом здании перекрытие является противопожарной преградой первого типа по [6] и должно иметь предел огнестойкости по потере теплоизолирующей способности (I), целостности (Е) и несущей способности (R) REI 150. Оценку предела огнестойкости перекрытия по существующим документам можно определить расчетным путем только по толщине защитного слоя (R) для статически определимой конструкции, по толщине перекрытия (I) и по возможности хрупкого разрушения при пожаре (Е). При этом достаточно правильную оценку дают расчеты I и Е, а несущую способность перекрытия при пожаре как статически неопределимой конструкции можно определить только расчетом термонапряженного состояния, используя теорию упруго-пластичности железобетона при нагреве или теорию метода предельного равновесия конструкции при действии статической и тепловой нагрузки при пожаре. Последняя теория является наиболее простой, так как она не требует определения напряжений от статической нагрузки и температуры, а только усилий (моментов) от действия статической нагрузки с учетом изменения свойств бетона и арматуры при нагреве до появления в статически неопределимой конструкции пластических шарниров при превращении ее в механизм. В связи с этим оценка несущей способности безбалочного перекрытия при пожаре сделана по методу предельного равновесия, причем в относительных единицах к несущей способности перекрытия в обычных условиях эксплуатации. Были рассмотрены и проанализированы рабочие чертежи здания, выполнены расчеты пределов огнестойкости железобетонного безбалочного перекрытия по наступлению нормируемых для данных конструкций признаков предельных состояний [6]. Расчет пределов огнестойкости по несущей способности выполнен с учетом изменения температуры бетона и арматуры за 2,5 часа стандартных испытаний. Все термодинамические и физико-механические характеристики материалов конструкции, приведенные в настоящем докладе приняты на основании данных ВНИИПО, НИИЖБ, ЦНИИСК [1, 3-5].

ПРЕДЕЛ ОГНЕСТОЙКОСТИ ПЕРЕКРЫТИЯ ПО ПОТЕРЕ ТЕПЛОИЗОЛИРУЮЩЕЙ СПОСОБНОСТИ (I)

ПРЕДЕЛ ОГНЕСТОЙКОСТИ ПЛИТЫ ПЕРЕКРЫТИЙ ПО ПОТЕРЕ ЦЕЛОСТНОСТИ (E)

ПРЕДЕЛ ОГНЕСТОЙКОСТИ ПЕРЕКРЫТИЯ ПО ПОТЕРЕ НЕСУЩЕЙ СПОСОБНОСТИ (R)

ВЫВОДЫ

  1. Для оценки предела огнестойкости безбалочного железобетонного перекрытия должны быть выполнены расчеты его предела огнестойкости по трем признакам предельных состояний: потери несущей способности R; потери целостности E; потери теплоизолирующей способности I. При этом можно использовать следующие методы: предельного равновесия, прогрева и механики трещин.
  2. Расчеты показали, что для рассматриваемого объекта по всем трем предельным состояниям предел огнестойкости перекрытия толщиной 200 мм из бетона класса по прочности при сжатии В25, армированного арматурной сеткой с ячейками 200х200 мм сталью А400 с толщиной защитного слоя арматуры диаметром 16 мм у нижней поверхности 33 мм и верхней диаметром 12 мм — 28 мм составляет не менее REI 150.
  3. Данное безбалочное железобетонное перекрытие может выполнять роль противопожарной преграды, первого типа по [6].
  4. Оценку минимального предела огнестойкости безбалочного железобетонного перекрытия можно выполнять по методу предельного равновесия при условиях достаточной заделки растянутой арматуры в местах образования пластических шарниров.

Литература

  1. Инструкция по расчету фактических пределов огнестойкости железобетонного строительных конструкций на основе применения ЭВМ. – М.: ВНИИПО, 1975.
  2. ГОСТ 30247.0-94. Конструкции строительные. Методы испытаний на огнестойкость. М., 1994. – 10 с.
  3. СП 52-101-2003. Бетонные и железобетонные конструкции без предварительного напряжения арматуры. – М.: ФГУП ЦПП, 2004. –54 с.
  4. СНиП-2.03.04-84. Бетонные и железобетонные конструкции, предназначенные для работы в условиях действия повышенных и высоких температур. – М.: ЦИТП Госстроя СССР, 1985.
  5. Рекомендации по расчету пределов огнестойкости бетонных и железобетонных конструкций. – М.: Стройиздат, 1979. – 38 с.
  6. СНиП-21-01-97* Пожарная безопасность зданий и сооружений. ГУП ЦПП, 1997. – 14 с.
  7. Рекомендаций по защите бетонных и железобетонных конструкций от хрупкого разрушения при пожаре. – М.: Стройиздат, 1979. – 21 с.
  8. Рекомендации по проектированию многопустотных плит перекрытий с требуемой огнестойкостью. – М.: НИИЖБ, 1987. – 28 с.
  9. Руководство по расчету статически неопределимых железобетонных конструкций. – М.: Стройиздат, 1975. С.98-121.
  10. Методические рекомендации по расчету огнестойкости и огнесохранности железобетонных конструкций (МДС 21-2.000). – М.: НИИЖБ, 2000. – 92 с.
  11. Гвоздев А.А.. Расчет несущей способности конструкций по методу предельного равновесия. Гос.издательство строительной литературы. – М., 1949.

Расчет предела огнестойкости железобетонных конструкций

Расчет предела огнестойкости железобетонной многопустотной плиты перекрытия

Исходные данные для расчета предела огнестойкости железобетонной плиты перекрытия приведены в таблице 1.1.1.1

Таблица 1.1.1.1 — Исходные данные для железобетонной плиты перекрытия

Нормативные нагрузки на плиту

длина рабочего пролета l, м

класс по прочности

толщина защитного слоя бетона д, мм

количество стержней, шт., диаметр, мм

временные p, кН/м 2

Вид бетона — легкий бетон плотностью с = 1600 кг/м 3 с крупным заполнителем из керамзита; плиты многопустотные, с круглыми пустотами, количество пустот — 6 шт, опирание плит — по двум сторонам.

Рис. 1.1.1.1 — а) поперечное сечение плиты; б) расчетная схема определения предела огнестойкости плиты

1) Определяем максимальный изгибающий момент M в плите:

— где — постоянные нагрузки на плиту, H/м 2 ;

— — временные нагрузки на плиту, H/м 2 ;

  • — — ширина сечения и длина рабочего пролета плиты, м.
  • 2) Определяем рабочую высоту сечения плиты h:

— где — высота сечения плиты, м;

  • — — толщина защитного слоя бетона, м;
  • d — диаметр рабочей растянутой арматуры, м.
  • 3) Площадь поперечного сечения всей растянутой арматуры As определяется в зависимости от диаметра арматуры:

— где — порядковый номер арматурного стержня;

— — площадь поперечного сечения j-го арматурного стержня.

4) Согласно методическому указанию для курсовой работы расчетные сопротивления растяжению арматуры Rsu и сжатию бетона Rbu определяются делением соответствующих нормативных сопротивлений Rsn (П 3.9 приложение 3) и Rbn (П 3.8 приложение 3) на коэффициенты надежности (для арматуры) и (для бетона). Для арматуры класса A-VI нормативное сопротивление составляет 980 МПа, для бетона, имеющего класс прочности B15, нормативное сопротивление составляет 11 МПа.

5) Определяем коэффициент условий работы при пожаре растянутой арматуры железобетонной плиты:

6) По таблице 1.1.1.2 (табл. П 3.3 приложение 3 МУ для КР) в зависимости от коэффициента работы при пожаре определяем критическую температуру прогрева, при которой теряется прочность растянутой арматуры плиты.

Заданная арматура A-VI, но так как в таблице нет значений для этого класса, принимаем значения для арматуры класса Aт-VI.

Так как , то для определения критической температуры применяется метод линейной интерполяции:

7) Определяем средний диаметр растянутой арматуры ds:

где j — порядковый номер арматурного стержня, м;

Таблица 1.1.1.2 — Значения коэффициента условий работы при пожаре стержневой арматуры различных классов в зависимости от температуры арматуры

соответственно диаметр, м и площадь поперечного сечения, м 2 j-го арматурного стержня.

8) Решаем теплотехническую задачу для определения предела огнестойкости сплошной железобетонной плиты:

где — приведенный коэффициент температуропроводности бетона, м 2 , определяется по табл. П 3.4 приложения 3 МУ для КР в зависимости от плотности бетона и вида заполнителя:

; огнестойкость пожарная опасность здание

и — поправочные коэффициенты, определяются в зависимости от плотности бетона по справочным данным, приведенным в табл. П 3.5 приложения 3 МУ для КР.

Для бетона плотностью 1600 кг/м 3 :

— средняя толщина защитного слоя бетона:

9) Определяем предел огнестойкости по признаку «R» (потеря несущей способности) многопустотных плит путем умножения предела огнестойкости сплошных плит на понижающий коэффициент 0,9:

Предел огнестойкости многопустотной железобетонной плиты по потере несущей способности составляет R 240.

10) Определим предел огнестойкости по признаку «I» (потеря теплоизолирующей способности) через приведенную толщину многопустотной плиты.

Приведенная толщина плиты определяется по формуле:

где — площадь сечения плиты, м 2 ;

— площадь пустот в плите, м 2 , определяется по формуле:

где — диаметр пустот, м;

По таблице 1.1.1.3 (табл. П 3.6 приложения 3 МУ для КР определяется предел огнестойкости по потере теплоизолирующей способности при условии отсутствия теплоотвода с необогреваемой поверхности плиты.

Таблица 1.1.1.3 — Толщины сплошного бетонного сечения, необходимые для обеспечения соответствующего предела огнестойкости по потере теплоизолирующей способности «I»

Приведенная толщина м, плотность бетона 1600 кг/м 3, следовательно предел огнестойкости по потере теплоизолирующей способности составляет I 180.

Предел огнестойкости по потере несущей способности 240 мин, а по теплоизолирующей 180 мин. Необходимо брать наименьший предел огнестойкости.

Вывод: предел огнестойкости железобетонной плиты REI 180.

Определение предела огнестойкости строительных конструкций. Таблица

Пределы огнестойкости строительных конструкций имеют следующие обозначения:

  • потеря несущей способности (R);
  • потеря целостности (Е);
  • потеря теплоизолирующей способности вследствие повышения температуры на необогреваемой поверхности конструкции до предельных значений (I);
  • достижение предельной величины плотности теплового потока на нормируемом расстоянии от необогреваемой поверхности конструкции (W).

Предел огнестойкости для заполнения проемов в противопожарных преградах наступает:

  • при потере целостности (Е),
  • теплоизолирующей способности (I),
  • достижении предельной величины плотности теплового потока (W) и (или) дымогазонепроницаемости (S).

Внимание: методические материалы для проведения занятий по данной теме по кнопке скачать после статьи!

Степени и пределы

(зданий, сооружений, строений и пожарных отсеков)

Строительные конструкции бесчердачных покрытий

Строительные конструкции лестничных клеток

Металлических

Испытание предела огнестойкости дверей

Пределы огнестойкости большинства незащищенных металлических конструкций очень малы и находятся в пределах: (R10 – R15) для стальных конструкций; (R6 – R8) для алюминиевых конструкций. Исключение составляют колонны массивного сплошного сечения, у которых предел огнестойкости без огнезащиты может достигать R 45, но применение таких конструкций в строительной практике встречается крайне редко.

В случаях, когда минимальный требуемый предел огнестойкости конструкции (за исключением конструкций в составе противопожарных преград) указан R15 (RE15, REI15), допускается применять незащищенные стальные конструкции независимо от их фактического предела огнестойкости, за исключением случаев, когда предел огнестойкости несущих элементов здания по результатам испытаний составляет менее R8 (СП 2.13130.2012).

Причина столь быстрого исчерпания незащищенными металлическими конструкциями способности сопротивляться воздействию пожара заключается в больших значениях теплопроводности и малых значениях теплоемкости. Высокая теплопроводность металла практически не вызывает температурного градиента внутри сечения металлической конструкции. Это приводит к тому, что при пожаре температура незащищенных металлических конструкций быстро достигает критических температур прогрева металла, при которых происходит снижение прочностных свойств материала до такой величины, что конструкция становится неспособной выдерживать приложенную к ней внешнюю нагрузку, в результате чего наступает предельное состояние конструкции по признаку потере несущей способности (R).

Значения критической температуры Tcr прогрева различных металлических конструкций при нормативной эксплуатационной нагрузке приведены в таблице:

Расчет предела огнестойкости железобетонной панели перекрытия ПК 6 — 58.12

Расчет предела огнестойкости железобетонной плиты перекрытия:

а) по признаку «R» — потере несущей способности;

Железобетонная плита перекрытия ПК 6-58.12, многопустотная свободно опирающаяся по двум сторонам. Размеры сечения: b = 1.19 м, длина рабочего пролета l = 5.7 м; высота сечения h = 0.22 м; толщина защитного слоя бетона до низа растянутой арматуры д = 0.02 м, диаметр пустот dП = 0.18 м.

Бетон: тяжелый, Rbu = 22 МПа.

Арматура: растянутая класса А-IV, Rsu = 883 МПа.

Решение теплотехнической задачи

1 Определяем значение максимального изгибающего момента в плите:

где b — ширина сечения ПК, м;

qp — нагрузка на ПК, Н/м.

М = = = 24.16 · 103 Нм.

2 Определяем рабочую высоту сечения плиты:

где h — высота сечения ПК, м;

rs — радиус растянутой арматуры плиты, м;

д — толщина защитного слоя бетона до низа растянутой арматуры, м.

h = h — rs — д = 0.22 — 0.0057 — 0.02 = 0.194 м.

3 Определяем коэффициент условий работы при пожаре гs,T растянутой арматуры:

где As — суммарная площадь арматур, м 2 ;

Rsu — сопротивление арматуры, МПа;

Rbu — сопротивление бетона, МПа.

4 Определяем значение критической температуры прогрева T cr растянутой арматуры плиты:

Согласно таблица 9.3.7, разд. 9.3 [2] для стали класса А-IV при гs,T = 0.3, методом интерполяции получаем:

T cr = 550 + = 563 єС.

5 Определяем значение среднего диаметра растянутой арматуры плиты:

где As,j — площадь j — ой арматуры, м 2 .

Решение прочностной задачи

1 Определяем значение предела огнестойкости сплошной железобетонной плиты по признаку «R» — потере несущей способности:

где бred — приведенный коэффициент температуропроводности;

ц1, ц2 — коэффициенты, учитывающие длительность загружения, гибкость и характер армирования.

фf.r = ()2 = =()2 = 1.93 = R115.

Согласно таблица 9.3.2 и таблица 9.3.3 [2], при с = 2350 кг/м 3 имеем:

бred = 0.00133 м 2 /ч;

2 Определяем искомое значение предела огнестойкости заданной многопустотной плиты по признаку «R» — потере несущей способности:

3 Определяем искомое значение предела огнестойкости заданной пустотной плиты по признаку «I» — потере теплоизолирующей способности:

Определяем приведенную толщину плиты:

где АП — площадь пустот в плите, м 2 .

Определяем искомое значение предела огнестойкости теплоотвода с необогреваемой поверхности плиты, согласно таблица 9.3.10 [2] получаем:

Окончательно принимаем наименьшее из двух полученных значений «R»: REI100.

Вывод: Панель перекрытия ПК 4.5-58.12 соответствует установленному пределу огнестойкости REI45 для зданий и сооружений имеющих степень огнестойкости II.

Читать еще:  Самостоятельное строительство навеса из металлопрофиля фото инструкции
Ссылка на основную публикацию
Adblock
detector