Вихревой теплогенератор новый источник тепла в доме
Вихревой теплогенератор
Далеко не на всех промышленных объектах существует возможность отапливать помещения классическими теплогенераторами, работающими от сжигания газа, жидкого или твердого топлива, а использование нагревателя с тэнами является нецелесообразным или небезопасным. В таких ситуациях на помощь приходит вихревой теплогенератор, использующий для нагревания рабочей жидкости кавитационные процессы. Основные принципы работы этих устройств были открыты еще в 30-х годах прошлого века, активно разрабатывались с 50-хгодов. Но внедрение в производственный процесс нагрева жидкости за счет вихревых эффектов произошло только в 90-х годах, когда вопрос экономии энергоресурсов стал наиболее остро.
Устройство и принцип работы
Изначально, за счет вихревых потоков научились получать нагрев воздуха и других газовых смесей. В тот момент греть так воду не представлялось возможным из-за отсутствия у нее свойств к сжатию. Первые попытки в этом направлении сделал Меркулов, который предложил заполнить трубу Ранка водой вместо воздуха. Выделение тепла оказалось побочным эффектом вихревого движения жидкости, и долгое время процесс не имел даже обоснования.
Сегодня известно, что при движении жидкости по специальной камере от избыточного давления молекулы воды выталкивают молекулы газа, которые скапливаются в пузырьки. Из-за процентного преимущества воды ее молекулы стремятся раздавить газовые включения, и в них возрастает поверхностное давление. При дальнейшем поступлении молекул газа температура внутри включений возрастает, достигая 800 – 1000ºС. А после достижения зоны с меньшим давлением происходит процесс кавитации (схлопывания) пузырьков, при котором накопленная тепловая энергия выделяется в окружающее пространство.
В зависимости от способа формирования кавитационных пузырьков внутри жидкости все вихревые теплогенераторы подразделяются на три категории:
- Пассивные тангенциальные системы;
- Пассивные аксиальные системы;
- Активные устройства.
Теперь рассмотрим каждую из категорий более детально.
Пассивные тангенциальные ВТГ
Это такие вихревые теплогенераторы, в которых термогенерирующая камера имеет статическое исполнение. Конструктивно такие вихревые генераторы представляют собой камеру с несколькими патрубками, по которым осуществляется подача и съем теплоносителя. Избыточное давление в них создается путем нагнетания жидкости компрессором, форма камеры и ее содержание представляет собой прямую или закрученную трубу. Пример такого устройства приведен на рисунке ниже.
Рисунок 1: принципиальная схема пассивного тангенциального генератора
При движении жидкости по входному патрубку происходит затормаживание на входе в камеру за счет тормозящего приспособления, из-за чего возникает разреженное пространство в зоне расширения объема. Затем происходит схлопывание пузырьков и нагревание воды. Для получения вихревой энергетики в пассивных вихревых теплогенераторах устанавливаются несколько входов / выходов из камеры, форсунки, переменная геометрическая форма и прочие приемы для создания переменного давления.
Пассивные аксиальные теплогенераторы
Как и предыдущий тип, пассивные аксиальные не имеют подвижных элементов для создания завихрений. Вихревые теплогенераторы такого типа осуществляют нагрев теплоносителя за счет установки в камере диафрагмы с цилиндрическими, спиральными или коническими отверстиями, сопла, фильера, дросселя, выступающих в роли сужающего устройства. В некоторых моделях устанавливаются по нескольку нагревательных элементов с различными характеристиками проходных отверстий для повышения эффективности их работы.
Рис. 2: принципиальная схема пассивного аксиального теплогенератора
Посмотрите на рисунок, здесь приведен принцип действия простейшего аксиального теплогенератора. Данная тепловая установка состоит из нагревательной камеры, входного патрубка, вводящего холодный поток жидкости, формирователя потока (присутствует далеко не во всех моделях), сужающего устройства, выходного патрубка с горячим потоком воды.
Активные теплогенераторы
Нагревание жидкости в таких вихревых теплогенераторах осуществляется за счет работы активного подвижного элемента, взаимодействующего с теплоносителем. Они оснащаются камерами кавитационного типа с дисковыми или барабанными активаторами. Это роторные теплогенераторы, одним из наиболее известных среди них является теплогенератор Потапова. Простейшая схема активного теплогенератора приведена на рисунке ниже.
Рис. 3: принципиальная схема активного теплогенератора
При вращении активатора в таком кавитационном теплогенераторе происходит образование пузырьков благодаря отверстиям на поверхности активатора и разнонаправленных с ними на противоположной стенке камеры. Такая конструкция считается наиболее эффективной, но и достаточно сложной в подборе геометрических параметров элементов. Поэтому преимущественное большинство вихревых теплогенераторов имеет перфорацию только на активаторе.
Назначение
На заре внедрения кавитационного генератора в работу он использовался только по прямому назначению – для передачи тепловой энергии. Сегодня, в связи с развитием и совершенствованием данного направления, вихревые теплогенераторы применяются для:
- Отопления помещений, как в бытовых, так и в производственных зонах;
- Нагревания жидкости для осуществления технологических операций;
- В качестве проточных водонагревателей, но с более высоким КПД, чем у классических бойлеров;
- Для пастеризации и гомогенезации пищевых и фармацевтических смесей с установленной температурой (при этом обеспечивается удаление вирусов и бактерий из жидкости без термической обработки);
- Получения холодного потока (в таких моделях горячая вода является побочным эффектом);
- Смешивание и разделение нефтепродуктов, добавление в получаемую смесь химических элементов;
- Парогенерации.
С дальнейшим совершенствованием вихревых теплогенераторов сфера их применения будет расширяться. Тем более что данный вид нагревательного оборудования имеет ряд предпосылок для вытеснения пока еще конкурентных технологий прошлого.
Преимущества и недостатки
В сравнении с идентичными технологиями, предназначенными для обогрева помещений или нагрева жидкостей вихревые теплогенераторы обладают рядом весомых преимуществ:
- Экологичность – в сравнении с газовыми, твердотопливными и дизельными теплогенераторами они не загрязняют окружающую среду;
- Пожаро- и взрывобезопасность – вихревые модели, в сравнении с газовыми теплогенераторами и устройствами на нефтепродуктах не представляют такой угрозы;
- Вариативность — вихревой теплогенератор может устанавливаться в уже существующие системы без необходимости установки новых трубопроводов;
- Экономность – в определенных ситуациях гораздо выгоднее классических теплогенераторов, так как обеспечивают ту же тепловую мощность в перерасчете на затрачиваемую электрическую мощность;
- Нет необходимости организации системы охлаждения;
- Не требуют организации отвода продуктов сгорания, не выделяют угарный газ и не загрязняют воздух рабочей зоны или жилого помещения;
- Обеспечивают достаточно высокий КПД – порядка 91 – 92% при сравнительно небольшой мощности электродвигателя или насоса;
- Не образуется накипь в процессе нагревания жидкости, что в значительной мере снижает вероятность повреждений из-за коррозии и засорения известковыми осадками;
Но, помимо преимуществ вихревые теплогенераторы имеют и ряд недостатков:
- Создает сильную шумовую нагрузку в месте установки, что сильно ограничивает их применение непосредственно в спальнях, залах, офисах и им подобных местах;
- Характеризуется большими габаритами, в сравнении с классическими нагревателями жидкости;
- Требует точной настройки процесса кавитации, так как пузырьки при столкновении со стенками трубопровода и рабочими элементами насоса приводят к их быстрому изнашиванию;
- Достаточно дорогостоящий ремонт при выходе со строя элементов вихревого теплогенератора.
Критерии выбора
При выборе вихревого теплогенератора важно определить актуальные параметры устройства, которые в наибольшей степени подойдут для решения поставленной задачи. К таким параметрам относятся:
- Потребляемая мощность – определяет количество расходуемой из сети электроэнергии, требуемой для работы установки.
- Коэффициент преобразования – определяет соотношение потребленной энергии в кВт и выделенной в качестве тепловой энергии в кВт.
- Скорость потока – определяет скорость движения жидкости и возможность ее регулирования (позволяет регулировать теплообмен в системах отопления или напор в нагревателе воды).
- Тип вихревой камеры – определяет способ получения тепловой энергии, эффективность процесса и требуемые для этого затраты.
- Габаритные размеры – важный фактор, влияющий на возможность установки теплогенератора в каком-либо месте.
- Количество контуров циркуляции – некоторые модели помимо контура теплоснабжения имеют контур отведения холодной воды.
Параметры некоторых вихревых теплогенераторов приведены в таблице ниже:
Таблица: характеристики некоторых моделей вихревых генераторов
Кавитационные вихревые теплогенераторы — все, что нужно знать о технологии и о ее практическом применении
Вот такой, казалось бы, простой прибор позволит позабыть о привычном дорогостоящем отоплении
Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов — это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.
Немного истории
Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.
Труба Ранка, проникая в которую газообразная среда делится на горячий и холодный воздух — это явление было открыто в начале двадцатого века, а применяется на практике сегодня
Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.
Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.
Показанный на схеме принцип работы вихревой трубы несложен — поток проходит через камеру закрутки, где разбивается на два потока с разной температурой
Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.
За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!
К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.
На фото показан демонстрационный вихревой генератор, в котором вода циркулирует в замкнутом контуре
Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.
Принцип действия
Так выглядит рабочий генератор Потапова — поток воды из патрубка очень горячий
Традиционно считалось, что кавитация — это паразитное явление, характеризующееся интенсивным образованием пузырьков, которые, во время схлопывания, провоцируют разрушение окружающих предметов.
Характерный пример последствий кавитации — разрушение корабельных винтов или разрушение крыльчатки лопастных насосов. Теплогенератор вихревого типа — это прибор, в котором паразитное явление приносит пользу.
На фото еще один теплогенератор Потапова, в ходе испытательных работ подключённый к отопительному радиатору
Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.
Несмотря на то, что кавитация — это паразитное явление, конструкционные элементы современных теплогенераторов, в отличии от тех же корабельных винтов, не страдают. Это объясняется тем, что кавитационные процессы протекают не вокруг дискового активатора, а за ним.
Принцип действия кавитационного преобразователя
- В преобразователь трубного типа подается основной поток жидкой среды обычной температуры;
- Навстречу движению основного потока подаются дополнительные потоки жидкой среды;
- Разнонаправленные потоки, сталкиваясь, создают эффект кавитации, за счет чего жидкая среда на выходе из преобразователя нагревается.
Устройство и особенности функционирования
Так выглядит стационарная кавитационная установка, подключённая к промышленной системе отопления
Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».
«Улитка» — это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.
Дисковый активатор, одетый на вал — это приспособление отвечает за движение водной среды и за создание кавитационного эффекта
В полости «улитки» располагается дисковый активатор — диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:
- Электродвигатель крутит дисковый активатор. Дисковый активатор — это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
- Активатор раскручивает жидкую среду. Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
- Преобразование механической энергии в тепловую. Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.
Вихревой теплогенератор
Теплогенератор Ю. С. Потапова очень похож на вихревую трубу Ж. Ранке, изобретенную этим французским инженером ещё в конце 20-х годов XX века. Работая над совершенствованием циклонов для очистки газов от пыли, тот заметил, что струя газа, выходящая из центра циклона, имеет более низкую температуру, чем исходный газ, подаваемый в циклон. Уже в конце 1931 г. Ранке подаёт заявку на изобретенное устройство, названное им «вихревой трубой». Но получить патент ему удаётся только в 1934 г., и то не на родине, а в Америке (Патент США №1952281.)
История создания
Французские же учёные тогда с недоверием отнеслись к этому изобретению и высмеяли доклад Ж. Ранке, сделанный в 1933 г. на заседании Французского физического общества. Ибо по мнению этих учёных, работа вихревой трубы, в которой происходило разделение подаваемого в неё воздуха на горячий и холодный потоки как фантастическим «демоном Максвелла», противоречила законам термодинамики. Тем не менее вихревая труба работала и позже нашла широкое применение во многих областях техники, в основном для получения холода.
Для нас наиболее интересны работы ленинградца В. Е. Финько, который обратил внимание на ряд парадоксов вихревой трубы, разрабатывая вихревой охладитель газов для получения сверхнизких температур. Он объяснил процесс нагрева газа в пристеночной области вихревой трубы «механизмом волнового расширения и сжатия газа» и обнаружил инфракрасное излучение газа из ее осевой области, имеющее полосовой спектр, что потом помогло нам разобраться и с работой вихревого теплогенератора Потапова.
В вихревой трубе Ранке, схема которой приведена на рисунке 1, цилиндрическая труба 1 присоединена одним концом к улитке 2, которая заканчивается сопловым вводом прямоугольного сечения, обеспечивающим подачу сжатого рабочего газа в трубу по касательной к окружности её внутренней поверхности. С другого торца улитка закрыта диафрагмой 3 с отверстием в центре, диаметр которого существенно меньше внутреннего диметра трубы 1. Через это отверстие из трубы 1 выходит холодный поток газа, разделяющийся при его вихревом движении в трубе 1 на холодную (центральную) и горячую (периферийную) части. Горячая часть потока, прилегающая к внутренней поверхности трубы 1, вращаясь, движется к дальнему концу трубы 1 и выходит из нее через кольцевой зазор между её краем и регулировочным конусом 4.
Рисунок 1. Вихревая труба Ранке: 1-труба; 2- улитка; 3- диафрагма с отверстием в центре; 4- регулировочный конус.
Законченной и непротиворечивой теории вихревой трубы до сих пор не существует, несмотря на простоту этого устройства. «На пальцах» получается, что при раскручивании газа в вихревой трубе он под действием центробежных сил сжимается у стенок трубы, в результате чего нагревается тут, как нагревается при сжатии в насосе. А в осевой зоне трубы, наоборот, газ испытывает разрежение, и тут он охлаждается, расширяясь. Выводя газ из пристеночной зоны через одно отверстие, а из осевой — через другое, и достигают разделения исходного потока газа на горячий и холодный потоки.
Жидкости, в отличие от газов, практически не сжимаемы. Поэтому более полувека никому и в голову не приходило подать в вихревую трубу воду вместо газа или пара. И автор решился на, казалось бы, безнадёжный эксперимент — подал в вихревую трубу вместо газа воду из водопровода.
К его удивлению, вода в вихревой трубе разделилась на два потока, имеющих разные температуры. Но не на горячий и холодный, а на горячий и тёплый. Ибо температура «холодного» потока оказалась чуть выше, чем температура исходной воды, подаваемой насосом в вихревую трубу. Тщательная же калориметрия показала, что тепловой энергии такое устройство вырабатывает больше, чем потребляет электрической двигатель насоса, подающего воду в вихревую трубу.
Так родился теплогенератор Потапова.
Конструкция теплогенератора
Правильнее говорить об эффективности теплогенератора — отношении величины вырабатываемой им тепловой энергии к величине потребленной им для этого извне электрической или механической энергии. Но поначалу исследователи не могли понять, откуда и как в этих устройствах появляется избыточное тепло. Предполагали даже, что туг нарушается закон сохранения энергии.
Рисунок 2. Схема вихревого теплогенератора: 1-инжекционный патрубок; 2- улитка; 3- вихревая труба; 4- донышко; 5- спрямитель потока; 6- штуцер; 7- спрямитель потока; 8- байпас; 9- патрубок.
Вихревой теплогенератор, схема которого приведена на рисунке 2, присоединяют инжекционным патрубком 1 к фланцу центробежного насоса (на рисунке не показан), подающего воду под давлением 4-6 атм. Попадая в улитку 2, поток воды сам закручивается в вихревом движении и поступает в вихревую трубу 3, длина которой раз в 10 больше ее диаметра. Закрученный вихревой поток в трубе 3 перемещается по винтовой спирали у стенок трубы к ее противоположному (горячему) концу, заканчивающемуся донышком 4 с отверстием в его центре для выхода горячего потока. Перед донышком 4 закреплено тормозное устройство 5 — спрямитель потока, выполненный в виде нескольких плоских пластин, радиально приваренных к центральной втулке, соосной с трубой 3. В виде сверху он напоминает оперенные авиабомбы или мины.
Когда вихревой поток в трубе 3 движется к этому спрямителю 5, в осевой зоне трубы 3 рождается противоток. В нём вода, тоже вращаясь, движется к штуцеру 6, врезанному в плоскую стенку улитки 2 соосно с трубой 3 и предназначенному для выпуска «холодного» потока. В штуцере 6 изобретатель установил ещё один спрямитель потока 7, аналогичный тормозному устройству 5 Он служит для частичного превращения энергии вращения «холодного» потока в тепло. А выходящую из него тёплую воду направил по байпасу 8 в патрубок 9 горячего выхода, где она смешивается с горячим потоком, выходящим из вихревой трубы через спрямитель 5. Из патрубка 9 нагретая вода поступает либо непосредственно к потребителю, либо в теплообменник (все про теплообменные аппараты), передающий тепло в контур потребителя. В последнем случае отработанная вода первичного контура (уже с меньшей температурой) возвращается в насос, который вновь подаёт её в вихревую трубу через патрубок 1.
После тщательных и всесторонних испытаний и проверок нескольких экземпляров теплогенератора «ЮСМАР» они пришли к заключению, что ошибок нет, тепла получается действительно больше, чем вкладывается механической энергии от двигателя насоса, подающего воду в теплогенератор и являющегося единственным потребителем энергии извне в этом устройстве.
Но непонятно было, откуда появляется «лишнее» тепло. Были предположения и о скрытой огромной внутренней энергии колебаний «элементарных осцилляторов» воды, высвобождающейся в вихревой трубе, и даже о высвобождении в её неравновесных условиях гипотетической энергии физического вакуума. Но это только предположения, не подкреплённые конкретными расчетами, подтверждающими экспериментально полученные цифры. Было ясно только одно: обнаружен новый источник энергии и похоже, что это фактически даровая энергия.
В первых модификациях тепловых установок Ю. С. Потапов подсоединял свой вихревой теплонагреватель, изображённый на рисунке 2, к выпускному фланцу обыкновенного рамногоцентробежного насоса для перекачивания воды. При этом вся конструкция находилась в окружении воздуха (Если что здесь про воздушное отопление дома своими руками) и была легко доступна для обслуживания.
Но КПД насоса, как и КПД электродвигателя, меньше ста процентов. Произведение этих КПД составляет 60-70%. Остальное — потери, идущие в основном на нагрев окружающего воздуха. А ведь изобретатель стремился греть воду, а не воздух. Поэтому он решился поместить насос и его электромотор в воду, подлежащую нагреву теплогенератором. Для этого использовал погружной (скважный) насос. Теперь тепло от нагрева мотора и насоса отдавалось уже не в воздух, а той воде, которую требовалось нагреть. Так появилось второе поколение вихревых теплоустановок.
Теплогенератор Потапова превращает в тепло часть своей внутренней энергии, а точнее часть внутренней энергии своей рабочей жидкости — воды.
Но вернёмся к серийным тепловым установкам второго поколения. В них вихревая труба по-прежнему находилась в воздухе сбоку от термоизолированного сосуда, в который был погружён скважный мотор-насос. От горячей поверхности вихревой трубы нагревался окружающий воздух, унося часть тепла, предназначавшегося для нагрева воды. Приходилось трубу обматывать стекловатой для уменьшения этих потерь. И чтобы не бороться с этими потерями трубу погрузили в тот сосуд, в котором уже находятся мотор и насос. Так появилась последняя серийная конструкция установки для нагрева воды, получившая имя «ЮСМАР».
Рисунок 3. Схема теплоустановки «ЮСМАР-М»: 1 — вихревой теплогенератор, 2 — электронасос, 3 — бойлер, 4 — циркуляционный насос, 5 — вентилятор, 6 — радиаторы, 7 — пульт управления, 8 — датчик температуры.
Установка ЮСМАР-М
В установке «ЮСМАР-М» вихревой теплогенератор в комплекте с погружным насосом помещены в общий сосуд-бойлер с водой (см. рисунок 3) для того, чтобы потери тепла со стенок теплогенератора, а также тепло, выделяющееся при работе электродвигателя насоса, тоже шли на нагрев воды, а не терялись. Автоматика периодически включает и отключает насос теплогенератора, поддерживая температуру воды в системе (или температуру воздуха в обогреваемом помещении) в заданных потребителем пределах. Снаружи сосуд-бойлер покрыт слоем теплоизоляции, которая одновременно служит звукоизоляцией и делает практически неслышимым шум теплогенератора даже непосредственно рядом с бойлером.
Установки «ЮСМАР» предназначены для нагрева воды и подачи её в системы автономного водяного отопления жилых помещений , промышленных и административных зданий, а также в душевые, бани, на кухни, в прачечные, мойки, для обогрева сушилок сельхозпродуктов, трубопроводов вязких нефтепродуктов для предотвращения их замерзания на морозе и других промышленных и бытовых нужд.
Рисунок 4. Фото тепловой установки «ЮСМАР-М»
Установки «ЮСМАР-М» питаются от промышленной трёхфазной сети 380 В, полностью автоматизированы, поставляются заказчикам в комплекте со всем необходимым для их работы и монтируются поставщиком «под ключ».
Все эти установки имеют одинаковый сосуд-бойлер (см. рисунок 4), в который погружают вихревые трубы и мотор-насосы разной мощности, выбирая наиболее подходящие конкретному заказчику. Габариты сосуда-бойлера: диаметр 650 мм, высота 2000 мм. На эти установки, рекомендуемые для использования как в промышленности, так и в быту (для обогрева жилых помещений путем подачи горячей воды в батареи водяного отопления), имеются технические условия ТУ У 24070270,001 -96 и сертификат соответствия РОСС RU. МХОЗ. С00039.
Установки «ЮСМАР» используют на многих предприятиях и в частных домовладениях, они получили сотни похвальных отзывов от пользователей. В настоящее время Уже тысячи теплоустановок «ЮСМАР» успешно работают в странах СНГ и ряде других стран Европы и Азии.
Их использование особенно выгодно там, куда ещё не дотянулись газопроводы и где люди вынуждены использовать для нагрева воды и обогрева помещений электроэнергию, которая с каждым годом становится всё дороже.
Рисунок 5. Схема подключения тепловой установки «ЮСМАР-М» к системе водяного отопления: 1 -теплогенератор «ЮСМАР»; 2 — циркулярный насос; 3-пульт управления; 4 -терморегулятор.
Теплоустановки «ЮСМАР» позволяют экономить треть той электроэнергии, которая необходима для нагрева воды и отопления помещений традиционными методами электронагрева.
Отработаны две схемы подключения потребителей к теплоустановке «ЮСМАР-М»: непосредственно к бойлеру (см. рисунок 5) — когда расход горячей воды в системе потребителя не подвержен резким изменениям (например, для отопления здания), и через теплообменник (см. рисунок 6) — когда расход воды потребителем колеблется во времени.
У теплоустановок «ЮСМАР» нет деталей, нагревающихся до температуры свыше 100°С, что делает эти установки особенно приемлемыми с точки зрения пожарной безопасности и техники безопасности.
Рисунок 6. Схема подключения тепловой установки «ЮСМАР-М» к душевой: 1-теплогенератор «ЮСМАР»; 2 -циркулярный насос; 3- пульт управления; 4 -термодатчик, 5 — теплообменник.
Используемая литература:
Ю.С. Потапов, Л.П. Фоминский, С.Ю. Потапов — » Энергия вращения»-01.01.2008 г.
Вихревой теплогенератор. Правда и вымысел.
Вихревой теплогенератор состоит из двигателя и кавитатора. В кавитатор подается вода (или другая жидкость). Двигатель раскручивает механизм кавитатора, в котором происходит процесс кавитации (схлопывания пузырьков). За счет этого, происходит нагрев жидкости, подаваемой в кавитатор. Подводимая электроэнергия расходуется на следующие цели: 1- нагрев воды, 2 — преодоление силы трения в двигателе и кавитаторе, 3- излучение звуковых колебаний (шум). Разработчики и производители утверждают, что принцип действия основан » на использовании возобновляемой энергии». При этом, не понятно, откуда эта энергия берется. Тем не менее, не происходит никакого дополнительного излучения. Соответственно, можно предположить, что вся энергия, подводимая к теплогенератору, тратится на нагрев воды. Таким образом, можно говорить о КПД, близком к 100%. Но не более.
Но перейдем от теории к практике.
На заре развития «вихревых теплогенераторов» предпринимались попытки проведения независимой экспертизы. Так, известная модель ЮСМАР изобретателя Ю.С.Потапова из Молдовы тестировалась американской компанией Earth Tech International (г.Остин, штат Техас), специализирующейся на экспериментальной верификации новых направлений в современной физике. В 1995 г. были проведены пять серий экспериментов по измерению соотношения между генерируемой тепловой и потребляемой электрической энергией. Заметим, что все многочисленные модификации испытуемого устройства, предназначенные для разных серий экспериментов, лично согласовывались с Ю.С.Потаповым в ходе визита одного из сотрудников компании в Молдову. Подробнейшее описание конструкции испытуемого теплогенератора с вихревой трубой, режимные параметры, методики проведения измерений и результаты приводятся на сайте компании www.earthtech.org/experiments/.
Для привода водяного насоса использовался электродвигатель с КПД=85%, тепловые потери которого на нагрев окружающего воздуха не принимались при расчете теплопроизводительности «вихревого теплогенератора». Отметим, что не измерялись и тепловые потери на нагрев окружающего воздуха, что, безусловно, несколько снижало получаемый КПД теплогенератора.
Результаты исследований, проведенных при варьировании основных режимных параметров (давление, расход теплоносителя, начальная температура воды и др.) в широком диапазоне продемонстрировали, что эффективность теплогенератора изменяется в диапазоне от 33 до 81%, что сильно не «дотягивает» до 300%, заявленных изобретателем перед проведением экспериментов.
Хотя по «тепловому вихрегенератору» расскажу.
Были некоторые примеры значительной экономии денежных средств на отопление в переходные периоды нашей экономики, когда деньги предприятий начинали считать. Сразу скажу, что с связано это с гримасами экономики, а совсем не с теплотехникой.
Скажем, некоторое предприятие желает отапливать свои помещения. Ну холодно им видите ли.
По некоторым причинам, ясно каким, не может вложиться в Газовую трубу, строить свою котельную на угле, мазуте — не хватает масштабов, а центральное отопление отсутствует или далеко.
Остается электричество, но при получении разрешения на использование электроэнергии в термальных целях устанавливали предприятию тариф, превышающий в несколько раз обычный.
Такие были раньше правила, и не только в России, но в Украине, Молдове и др. государствах, которые отпочковались от нас.
Вот тут приходил на помощь г-н Потапов и подобные.
Покупали чудо-устройство, тариф на электроэнергию для электродвигателей оставался обычный, тепловой КПД естественно никак больше сотни быть не мог, а вот в денежном отношении КПД был и 200 и 300, смотря во сколько раз сэкономили на тарифе.
Применяя ТН можно было достичь еще большей экономии, но для тех времен и вихретеплогенератора с эффективностью якобы 1,2-1,5 вполне было достаточно.
Ведь еще больший заявляемый КПД мог только повредить и отпугнуть покупателей, ведь квоты на электроснабжение выделялись по потребляемой мощности, а давал генератор тепла столько-же, если не меньше, в связи с потерями по cos Ф.
По теплопотерям помещений в 30-40% погрешности еще как-то можно было уложиться, списать на колебания погоды.
Сейчас это ушло в прошлое, но тема вихрегенераторов по инерции продолжает всплывать, и ведь находятся дураки, которые покупают, клюнув на информацию с фотками и адресами, что ряд уважаемых предприятий в свое время использовали их у себя и экономили большую кучу денег.
Только всей подоплеки им никто не рассказывает.