Astapro.ru

33 квадратных метра
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Теплотехнические характеристики слоёв конструкции

Теплотехнический расчет с примером

Давным-давно здания и сооружения строились, не задумываясь о том, какими теплопроводными качествами обладают ограждающие конструкции. Другими словами, стены делались просто толстыми. И если вам когда-нибудь случалось быть в старых купеческих домах, то вы могли заметить, что наружные стены этих домов выполнены из керамического кирпича, толщина которых составляет порядка 1,5 метров. Такая толщина кирпичной стены обеспечивала и обеспечивает до сих пор вполне комфортное пребывание людей в этих домах даже в самые лютые морозы.

В настоящее же время все изменилось. И сейчас экономически не выгодно делать стены такими толстыми. Поэтому были придуманы материалы, которые могут ее уменьшить. Одни из них: утеплители и газосиликатные блоки. Благодаря этим материалам, например, толщина кирпичной кладки может быть снижена до 250 мм.

Теперь стены и перекрытия чаще всего делают 2-х или 3-х слойными, одним слоем из которых является материал с хорошими теплоизоляционными свойствами. А для того, чтобы определить оптимальную толщину этого материала, проводится теплотехнический расчет и определяется точка росы.

Как производится расчет по определению точки росы вы можете ознакомиться на следующей странице. Здесь же будет рассмотрен теплотехнический расчет на примере.

Необходимые нормативные документы

Для расчета потребуются два СНиПа, один СП, один ГОСТ и одно пособие:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Актуализированная редакция от 2012 года [1].
  • СНиП 23-01-99* (СП 131.13330.2012). «Строительная климатология». Актуализированная редакция от 2012 года [2].
  • СП 23-101-2004. «Проектирование тепловой защиты зданий» [3].
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях» [4].
  • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие» [5].

Скачать СНиПы и СП вы можете здесь, ГОСТ — здесь, а Пособие — здесь.

Рассчитываемые параметры

В процессе выполнения теплотехнического расчета определяют:

  • теплотехнические характеристики строительных материалов ограждающих конструкций;
  • приведённое сопротивление теплопередачи;
  • соответствие этого приведённого сопротивления нормативному значению.

Дальше будут приведен пример теплотехнического расчета без воздушной прослойки.

Пример. Теплотехнический расчет трехслойной стены без воздушной прослойки

Исходные данные

1. Климат местности и микроклимат помещения

Район строительства: г. Нижний Новгород.

Назначение здания: жилое .

Расчетная относительная влажность внутреннего воздуха из условия не выпадения конденсата на внутренних поверхностях наружных ограждений равна — 55% (СНиП 23-02-2003 п.4.3. табл.1 для нормального влажностного режима).

Оптимальная температура воздуха в жилой комнате в холодный период года tint= 20°С (ГОСТ 30494-96 табл.1).

Расчетная температура наружного воздуха text, определяемая по температуре наиболее холодной пятидневки обеспеченностью 0,92 = -31°С (СНиП 23-01-99 табл. 1 столбец 5);

Продолжительность отопительного периода со средней суточной температурой наружного воздуха 8°С равна zht = 215 сут (СНиП 23-01-99 табл. 1 столбец 11);

Средняя температура наружного воздуха за отопительный период tht = -4,1°С (СНиП 23-01-99 табл. 1 столбец 12).

2. Конструкция стены

Стена состоит из следующих слоев:

  • Кирпич декоративный (бессер) толщиной 90 мм;
  • утеплитель (минераловатная плита), на рисунке его толщина обозначена знаком «Х», так как она будет найдена в процессе расчета;
  • силикатный кирпич толщиной 250 мм;
  • штукатурка (сложный раствор), дополнительный слой для получения более объективной картины, так как его влияние минимально, но есть.

3. Теплофизические характеристики материалов

Значения характеристик материалов сведены в таблицу.

Примечание (*): Данные характеристики можно также найти у производителей теплоизоляционных материалов.

Расчет

4. Определение толщины утеплителя

Для расчета толщины теплоизоляционного слоя необходимо определить сопротивление теплопередачи ограждающей конструкции исходя из требований санитарных норм и энергосбережения.

4.1. Определение нормы тепловой защиты по условию энергосбережения

Определение градусо-суток отопительного периода по п.5.3 СНиП 23-02-2003:

Примечание: также градусо-сутки имеют обозначение — ГСОП.

Нормативное значение приведенного сопротивления теплопередаче следует принимать не менее нормируемых значений, определяемых по СНИП 23-02-2003 (табл.4) в зависимости от градусо-суток района строительства:

Rreq= a×Dd + b = 0,00035 × 5182 + 1,4 = 3,214м 2 × °С/Вт ,

где: Dd — градусо-сутки отопительного периода в Нижнем Новгороде,

a и b — коэффициенты, принимаемые по таблице 4 (если СНиП 23-02-2003) или по таблице 3 (если СП 50.13330.2012) для стен жилого здания (столбец 3).

4.1. Определение нормы тепловой защиты по условию санитарии

В нашем случае рассматривается в качестве примера, так как данный показатель рассчитывается для производственных зданий с избытками явной теплоты более 23 Вт/м 3 и зданий, предназначенных для сезонной эксплуатации (осенью или весной), а также зданий с расчетной температурой внутреннего воздуха 12 °С и ниже приведенное сопротивление теплопередаче ограждающих конструкций (за исключением светопрозрачных).

Определение нормативного (максимально допустимого) сопротивления теплопередаче по условию санитарии (формула 3 СНиП 23-02-2003):

где: n = 1 — коэффициент, принятый по таблице 6 [1] для наружной стены;

tint = 20°С — значение из исходных данных;

text = -31°С — значение из исходных данных;

Δtn = 4°С — нормируемый температурный перепад между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции, принимается по таблице 5 [1] в данном случае для наружных стен жилых зданий;

αint = 8,7 Вт/(м 2 ×°С) — коэффициент теплопередачи внутренней поверхности ограждающей конструкции, принимается по таблице 7 [1] для наружных стен.

4.3. Норма тепловой защиты

Из приведенных выше вычислений за требуемое сопротивление теплопередачи выбираем Rreq из условия энергосбережения и обозначаем его теперь Rтр0= 3,214м 2 × °С/Вт .

5. Определение толщины утеплителя

Для каждого слоя заданной стены необходимо рассчитать термическое сопротивление по формуле:

где: δi- толщина слоя, мм;

λi — расчетный коэффициент теплопроводности материала слоя Вт/(м × °С).

1 слой (декоративный кирпич): R1 = 0,09/0,96 = 0,094 м 2 × °С/Вт .

3 слой (силикатный кирпич): R3 = 0,25/0,87 = 0,287 м 2 × °С/Вт .

4 слой (штукатурка): R4 = 0,02/0,87 = 0,023 м 2 × °С/Вт .

Определение минимально допустимого (требуемого) термического сопротивления теплоизоляционного материала (формула 5.6 Е.Г. Малявина «Теплопотери здания. Справочное пособие»):

где: Rint = 1/αint = 1/8,7 — сопротивление теплообмену на внутренней поверхности;

Rext = 1/αext = 1/23 — сопротивление теплообмену на наружной поверхности, αext принимается по таблице 14 [5] для наружных стен;

ΣRi = 0,094 + 0,287 + 0,023 — сумма термических сопротивлений всех слоев стены без слоя утеплителя, определенных с учетом коэффициентов теплопроводности материалов, принятых по графе А или Б (столбцы 8 и 9 таблицы Д1 СП 23-101-2004) в соответствии с влажностными условиями эксплуатации стены, м 2 ·°С/Вт

Толщина утеплителя равна (формула 5,7 [5]):

где: λут — коэффициент теплопроводности материала утеплителя, Вт/(м·°С).

Определение термического сопротивления стены из условия, что общая толщина утеплителя будет 250 мм (формула 5.8 [5]):

Читать еще:  Отопление дома водородом с помощью нно генератора

где: ΣRт,i — сумма термических сопротивлений всех слоев ограждения, в том числе и слоя утеплителя, принятой конструктивной толщины, м 2 ·°С/Вт.

Из полученного результата можно сделать вывод, что

R = 3,503м 2 × °С/Вт > Rтр0 = 3,214м 2 × °С/Вт → следовательно, толщина утеплителя подобрана правильно.

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

Примечание: влияние воздушной прослойки учитывается, например, при теплотехническом расчете пластиковых стеклопакетов.

Теплотехнические характеристики слоёв конструкции

КОНСТРУКЦИИ ОГРАЖДАЮЩИЕ ЗДАНИЙ

ХАРАКТЕРИСТИКИ ТЕПЛОТЕХНИЧЕСКИХ НЕОДНОРОДНОСТЕЙ

Construction enclosing of buildings characteristics of thermal conductive of inclusions

Дата введения 2015-04-30

Сведения о своде правил

1 ИСПОЛНИТЕЛЬ — Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук (НИИСФ РААСН)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт)

6 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему своду правил, а также тексты изменений и поправок размещаются в информационной системе общего пользования — на официальном сайте Министерства по строительству и жилищно-коммунальному хозяйству Российской Федерации в сети Интернет

Изменение N 1 внесено изготовителем базы данных по тексту М.: Стандартинформ, 2019

Настоящий свод правил разработан в развитие раздела 5 и приложения К СП 50.13330 «СНиП 23-02-2003 Тепловая защита зданий», с целью повышения уровня проектирования тепловой защиты зданий, упрощения и упорядочивания работы специалистов, проектирующих тепловой контур здания. Основную часть свода правил составляют таблицы с расчетными характеристиками различных узлов конструкций, позволяющие частично или полностью исключить расчеты температурных полей в процессе проектирования или экспертной оценки конструкций.

Метод расчета приведенного сопротивления теплопередаче и табличные данные разработаны НИИСФ РААСН: канд. техн. наук В.В.Козлов (ответственный исполнитель), д-р техн. наук В.Г.Гагарин.

ОАО «ЦНИИПромзданий»: заместитель генерального директора канд. техн. наук С.М.Гликин, руководитель отдела канд. техн. наук A.M.Воронин. Представлены варианты конструктивных решений узлов многослойных конструкций стен, получивших широкое применение в практике строительства.

1 Область применения

1 Область применения

Настоящий свод правил распространяется на расчет приведенного сопротивления теплопередаче фрагментов ограждающих конструкций зданий, удельных потерь теплоты через теплозащитные элементы и коэффициента теплотехнической однородности, для строящихся или реконструируемых жилых, общественных, производственных, сельскохозяйственных и складских зданий, в которых необходимо поддерживать определенный температурно-влажностный режим.

2 Нормативные ссылки

В настоящем своде правил использованы ссылки на следующие нормативные документы:

ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях

ГОСТ 33740-2016 Системы фасадные теплоизоляционные композиционные с наружными штукатурными слоями. Термины и определения

СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий» (с изменением N 1)

СП 131.13330.2018 «СНиП 23-01-99* Строительная климатология»

Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных стандартов (сводов правил и/или классификаторов) в информационной системе общего пользования — на официальном сайте национального органа Российской Федерации по стандартизации в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячно издаваемого информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт (документ), на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта (документа) с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт (документ), на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта (документа) с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт (документ), на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт (документ) отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил можно проверить в Федеральном информационном фонде технических регламентов и стандартов.

3 Термины и определения

В настоящем своде правил применены термины по СП 50.13330, а также следующие термины с соответствующими определениями:

3.1 теплозащитный элемент: Отдельный участок конструкции, деталь (в основном прорезающая утеплитель), стык между различными конструкциями, влияющий на потери теплоты через конструкцию.

3.2 удельный геометрический показатель теплозащитного элемента: Средняя площадь, протяженность или количество теплозащитных элементов данного вида, приходящееся на 1 м ограждающей конструкции.

3.3 целевое сопротивление теплопередаче фрагмента ограждающей конструкции , м ·°С/Вт: Приведенное сопротивление теплопередаче, выбранное в качестве цели при проектировании конструкции.

4 Общие положения

4.1 В соответствии с настоящим сводом правил выполняют и оформляют: расчет приведенного сопротивления теплопередаче ограждающих конструкций и их фрагментов, расчет коэффициента теплотехнической однородности и расчет удельных потерь теплоты через теплозащитные элементы.

4.2 Условия эксплуатации ограждающих конструкций для выбора теплотехнических показателей материалов принимают по СП 50.13330.

Внутренние и наружные температуры принимаются либо по проектному заданию, либо внутренняя температура — по ГОСТ 30494, наружная температура — по СП 131.13330.

4.3 Требования к приведенному сопротивлению теплопередаче и минимальной температуре внутренней поверхности ограждающих конструкций здания принимают по СП 50.13330.

5 Расчет приведенного сопротивления теплопередаче фрагмента теплозащитной оболочки здания или выделенной ограждающей конструкции

5.1 Расчет основан на представлении фрагмента теплозащитной оболочки здания в виде набора независимых элементов, каждый из которых влияет на тепловые потери через фрагмент (далее — теплозащитных элементов).

В качестве теплозащитных элементов используют отдельные участки конструкции, детали (как правило, прорезающие утеплитель), стыки между различными конструкциями. Одна и та же конструкция может быть разбита на элементы различными способами. В приложении А приведены типовые разбивки на теплозащитные элементы основных видов стен.

При разбивке на элементы необходимо соблюдать следующие правила:

Читать еще:  Современные решения для реконструкции старых систем отопления

— совокупность выделенных элементов должна быть достаточной для составления рассматриваемой конструкции, т.е. содержать все узлы конструкции;

— при составлении конструкции элементы не пересекаются;

— элементы влияют на тепловые потери через конструкцию.

5.2 Расчет удельных потерь теплоты через элементы ограждающей конструкции должен содержать следующие части:

— схему или чертеж, позволяющие установить состав и устройство узла содержащего элемент;

— температурное поле узла;

— принятые в расчете температурного поля температуры наружного и внутреннего воздуха, а также геометрические размеры узла, включенного в расчетную область;

— минимальную температуру внутренней поверхности конструкции и поток теплоты через узел, полученные в результате расчетов;

— удельные потери теплоты через элемент, посчитанные по формулам (Е.8), (Е.9) или (Е.11), (Е.12) СП 50.13330.

Теплотехнические характеристики слоёв конструкции

Определяем общее сопротивление теплопередачи трехслойной ограждающей конструкции по формуле (8) /23/

R = Rsi + R1 + R2 + R3 + Rse = м 2 • 0 С/Вт

Строим схематический разрез ограждающей конструкции в масштабе термических сопротивлений, превращая тем самым неоднородную трехслойную ограждающую конструкцию в однослойную однородную конструкцию (рис. 1а), размещая при этом численные значения термических сопротивлений от Rsi до Rse .

С левой стороны схематического разреза размещаем два масштаба – один в масштабе положительных и отрицательных температур, второй – в масштабе парциального давления.

С правой стороны от первого схематического разреза вычерчиваем второй разрез трехслойной ограждающей конструкции в масштабе линейных размеров слоев ограждения (рис. 1б).

Рисунок к примеру. Построение графиков распределения температуры, максимальной и действительной упругости водяного пара внутри ограждающих конструкций: а) на схематическом разрезе конструкции, выполненной в масштабе термических сопротивлений: б) – то же, выполненной в линейном масштабе

По масштабу температур находим численные значения температуры внутреннего и наружного воздуха и откладываем их на крайних границах первого схематического разреза.

В связи с тем, что в однослойных однородных конструкциях изменение температуры имеет линейный характер, соединяем крайние точки первого схематического разреза между собой линиейАВ.

Согласно численным значениям температур tint и text по приложению (С) СП 23-101—04 находим соответствующие им численные значения максимального парциального давления водяного пара внутреннего и наружного воздуха:

На масштабе парциального давления устанавливаем максимальные значения парциального давления водяного пара и переносим их в виде точек на крайние границы первого схематического разреза. Полученные точки С и Д соединяем между собой, получая наклонную линию СД.

Используя формулу относительной влажности,

находим численное значение действительного парциального давления водяного пара внутреннего воздуха при температуре tint = + 20 0 C и относительной влажности 55 %

По табл. 1 /24/ определяем численное значение средней месячной относительной влажности наружного воздуха наиболее холодного месяца, которое для г. Казани составляет φext = 83 %.

Рассчитываем действительное парциальное давление водяного пара наружного воздуха для относительной влажности φ = 83 %

Па

Находим на масштабе парциального давления численные значения eint и eext и откладываем их на границах первого схематического разреза в виде точек Е и F, которые затем соединяем наклонной линией ЕF.

После проведения на первом схематическом разрезе наклонных линий АВ, СD и ЕF на границах слоев внутри ограждающей конструкции получаем точки пересечения τsi, τ1, τ2 и τse ; Esi, E1, E2, и Ese ; esi, e1, е2 и еse , которые отображают график изменения температуры, действительного и максимального парциального давления внутри первого схематического разреза.

Для получения фактических графиков изменения температуры, действительного и максимального парциального давления внутри фактической трехслойной ограждающей конструкции точки пересечения на границах слоев первого схематического разреза параллельным переносом переносим на второй схематический разрез.

В. Вывод

1. Полученные в процессе переноса ломаные линии τ′si, τ′1, τ′2 ,τ′se; E′si, Е′1, E′2 ,E′se и e′si, e′1, e′2, e′se являются фактическими графиками изменения температуры, действительного и максимального парциального давления водяного пара внутри рассматриваемой трехслойной ограждающей конструкции, выполненной из разных материалов

2. Более крутой наклон графиков температуры и парциального давления указывает на слой, выполненный из малотеплопроводного материала, а более пологий – наоборот, из теплопроводгого материала.

Плотность воздушной прослойки. Теплотехнические характеристики слоёв конструкции. Основы теплопередачи в здании

.
1.3 Здание как единая энергетическая система .
2. Тепловлагопередача через наружные ограждения .
2.1 Основы теплопередачи в здании .
2.1.1 Теплопроводность .
2.1.2 Конвекция .
2.1.3 Излучение .
2.1.4 Термическое сопротивление воздушной прослойки.
2.1.5 Коэффициенты теплоотдачи на внутренней и наружной поверхностях.
2.1.6 Теплопередача через многослойную стенку.
2.1.7 Приведенное сопротивление теплопередаче.
2.1.8 Распределение температуры по сечению ограждения.
2.2 Влажностный режим ограждающих конструкций.
2.2.1 Причины появления влаги в ограждениях.
2.2.2 Отрицательные последствия увлажнения наружных ограждений.
2.2.3 Связь влаги со строительными материалами.
2.2.4 Влажный воздух.
2.2.5 Влажность материала.
2.2.6 Сорбция и десорбция.
2.2.7 Паропроницаемость ограждений.
2.3 Воздухопроницаемость наружных ограждений.
2.3.1 Основные положения.
2.3.2 Разность давлений на наружной и внутренней поверхности ограждений.
2.3.3 Воздухопроницаемость строительных материалов.

2.1.4 Термическое сопротивление воздушной прослойки.

Для внесения единообразия сопротивление теплопередаче замкнутых воздушных прослоек , расположенных между слоями ограждающей конструкции, называют термическим сопротивлением R в.п, м². ºС/Вт.
Схема передачи теплоты через воздушную прослойку представлена на рис.5.

Рис.5. Теплообмен в воздушной прослойке.

Тепловой поток, проходящий через воздушную прослойку q в.п , Вт/м ² , складывается из потоков, передаваемых теплопроводностью (2) q т , Вт/м ² , конвекцией (1) q к , Вт/м ² , и излучением (3) q л , Вт/м ² .


(2.12)

При этом доля потока, передаваемого излучением самая большая. Рассмотрим замкнутую вертикальную воздушную прослойку, на поверхностях которой разность температуры составляет 5ºС. С увеличением толщины прослойки от 10 мм до 200 мм доля теплового потока за счет излучения возрастает с 60% до 80%. При этом доля теплоты, передаваемой путем теплопроводности, падает от 38% до 2%, а доля конвективного теплового потока возрастает с 2% до 20% .
Прямой расчет этих составляющих достаточно громоздок. Поэтому в нормативных документах приводятся данные о термических сопротивлениях замкнутых воздушных прослоек, которые в 50-х годах ХХ века была составлена К.Ф. Фокиным по результатам экспериментов М.А. Михеева . При наличии на одной или обеих поверхностях воздушной прослойки теплоотражающей алюминиевой фольги, затрудняющей лучистый теплообмен между поверхностями, обрамляющими воздушную прослойку, термическое сопротивление следует увеличить в два раза. Для увеличения термического сопротивления замкнутыми воздушными прослойками в рекомендуется иметь в виду следующие выводы из исследований:
1) эффективными в теплотехническом отношении являются прослойки небольшой толщины;
2) рациональнее делать в ограждении несколько прослоек малой толщины, чем одну большой;
3) воздушные прослойки желательно располагать ближе к наружной поверхности ограждения, так как при этом в зимнее время уменьшается тепловой поток излучением;
4) вертикальные прослойки в наружных стенах необходимо перегораживать горизонтальными диафрагмами на уровне междуэтажных перекрытий;
5) для сокращения теплового потока, передаваемого излучением, можно одну из поверхностей прослойки покрывать алюминиевой фольгой, имеющей коэффициент излучения около ε=0,05. Покрытие фольгой обеих поверхностей воздушной прослойки практически не уменьшает передачу теплоты по сравнению с покрытием одной поверхности.
Вопросы для самоконтроля
1. Что является потенциалом переноса теплоты?
2. Перечислите элементарные виды теплообмена.
3. Что такое теплопередача?
4. Что такое теплопроводность?
5. Что такое коэффициент теплопроводности материала?
6. Напишите формулу теплового потока, передаваемого теплопроводностью в многослойной стенке при известных температурах внутренней tв и наружной tн поверхностей.
7. Что такое термическое сопротивление?
8. Что такое конвекция?
9. Напишите формулу теплового потока, передаваемого конвекцией от воздуха к поверхности.
10. Физический смысл коэффициента конвективной теплоотдачи.
11. Что такое излучение?
12. Напишите формулу теплового потока, передаваемого излучением от одной поверхности к другой.
13. Физический смысл коэффициента лучистой теплоотдачи.
14. Как называется сопротивление теплопередаче замкнутой воздушной прослойки в ограждающей конструкции?
15. Из тепловых потоков какой природы состоит общий тепловой поток через воздушную прослойку?
16. Какой природы тепловой поток превалирует в тепловом потоке через воздушную прослойку?
17. Как влияет толщина воздушной прослойки на распределение потоков в ней.
18. Как уменьшить тепловой поток через воздушную прослойку?

Читать еще:  Из чего состоит магазинный элемент

В статье рассматривается конструкция теплоизоляционной системы с замкнутой воздушной прослойкой между теплоизоляцией и стеной здания. Предлагается использовать паропроницаемые вставки в теплоизоляции с целью предотвращения конденсации влаги в прослойке воздуха. Приводится метод расчета площади вставок в зависимости от условий использования теплоизоляции.

This paper describes the thermal insulating system having dead air space between the thermal insulation and the outer wall of the building. Water vapour-permeable inserts are proposed for use in the thermal insulation in order to prevent moisture condensation in the air space. The method for calculating the area of the inserts has been offered depending on the conditions of the thermal insulation usage.

ВВЕДЕНИЕ

Воздушная прослойка является элементом многих ограждающих конструкций зданий. В работе исследованы свойства ограждающих конструкций с замкнутой и вентилируемой воздушными прослойками. В то же время особенности ее применения во многих случаях требуют решения задач строительной теплотехники в конкретных условиях использования.

Известна и широко используется в строительстве конструкция теплоизоляционной системы с вентилируемой воздушной прослойкой . Основное преимущество этой системы перед легкими штукатурными системами — возможность выполнения работ по утеплению зданий круглый год. К ограждающей конструкции вначале прикрепляется система крепежа утеплителя. Утеплитель прикрепляется к этой системе. Наружная защита утеплителя устанавливается от него на некотором расстоянии, так что между утеплителем и наружным ограждением образуется воздушная прослойка. Конструкция системы утепления позволяет осуществлять вентиляцию воздушной прослойки с целью удаления излишков влаги, что обеспечивает снижение количества влаги в утеплителе. К недостаткам этой системы можно отнести сложность и необходимость наряду с использованием утеплительных материалов применять сайдинговые системы, обеспечивающие необходимый зазор для движущегося воздуха.

Известна система вентиляции, в которой воздушная прослойка примыкает непосредственно к стене здания . Теплоизоляция выполнена в виде трехслойных панелей: внутренний слой – теплоизоляционный материал, наружные слои – алюминий и алюминиевая фольга. Такая конструкция защищает утеплитель от проникновения как атмосферной влаги, так и влаги из помещений. Поэтому его свойства не ухудшаются в любых условиях эксплуатации, что позволяет сэкономить до 20 % утеплителя по сравнению с обычными системами . Недостатком указанных систем является необходимость проветривания прослойки для удаления влаги, мигрирующей из помещений здания . Это приводит к снижению теплоизоляционных свойств системы. К тому же, тепловые потери нижних этажей зданий увеличиваются, так как холодному воздуху, поступающему в прослойку через отверстия внизу системы, требуется некоторое время для нагрева до установившейся температуры.

СИСТЕМА УТЕПЛЕНИЯ С ЗАМКНУТОЙ ВОЗДУШНОЙ ПРОСЛОЙКОЙ

Возможна система теплоизоляции, аналогичная , с замкнутой воздушной прослойкой. Следует обратить внимание на тот факт, что движение воздуха в прослойке необходимо только для удаления влаги. Если решить задачу удаления влаги другим способом, без проветривания, получим систему теплоизоляции с замкнутой воздушной прослойкой без указанных выше недостатков.

Для решения поставленной задачи система теплоизоляции должна иметь вид, представленный на рис. 1. Теплоизоляцию здания следует выполнить с паропроницаемыми вставками из теплоизоляционного материала, например, минеральной ваты. Систему теплоизоляции необходимо устроить таким образом, чтобы обеспечивалось удаление пара из прослойки, а внутри нее влажность была ниже точки росы в прослойке.

1 – стена здания; 2 – крепежные элементы; 3 – теплоизоляционные панели; 4 – паротеплоизоляционные вставки

Рис. 1. Теплоизоляция с паропроницаемыми вставками

Для давления насыщенного пара в прослойке можно записать выражение :

Пренебрегая термическим сопротивлением воздуха в прослойке, среднюю температуру внутри прослойки определим по формуле

(2)

где T in , T out – температура воздуха внутри здания и наружного воздуха соответственно, о С;

R 1 , R 2 – сопротивление теплопередаче стены и теплоизоляции соответственно, м 2 × о С/Вт.

Для пара, мигрирующего из помещения через стену здания, можно записать уравнение:

(3)

где P in , P – парциальное давление пара в помещении и прослойке, Па;

S 1 – площадь наружной стены здания, м 2 ;

k пп1 – коэффициент паропроницаемости стены, равный:

здесь R пп1 = m 1 /l 1 ;

m 1 – коэффициент паропроницаемости материала стены, мг/(м×ч×Па);

l 1 – толщина стены, м.

Для пара, мигрирующего из воздушной прослойки через паропроницаемые вставки в теплоизоляции здания, можно записать уравнение:

(5)

где P out – парциальное давление пара в наружном воздухе, Па;

S 2 – площадь паропроницаемых теплоизоляционных вставок в теплоизоляции здания, м 2 ;

k пп2 – коэффициент паропроницаемости вставок, равный:

здесь R пп2 = m 2 /l 2 ;

m 2 – коэффициент паропроницаемости материала паропроницаемой вставки, мг/(м×ч×Па);

l 2 – толщина вставки, м.

Приравняв правые части уравнений (3) и (5) и решив полученное уравнение для баланса пара в прослойке относительно P , получим значение давления пара в прослойке в виде:

(7)

Записав условие отсутствия конденсации влаги в воздушной прослойке в виде неравенства:

и решив его, получим требуемое значение отношения суммарной площади паропроницаемых вставок к площади стены:

В таблице 1 приведены полученные данные для некоторых вариантов ограждающих конструкций. В расчетах предполагалось, что коэффициент теплопроводности паропроницаемой вставки равен коэффициенту теплопроводности основной теплоизоляции в системе.

Ссылка на основную публикацию
Adblock
detector