Astapro.ru

33 квадратных метра
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор давления газа рдук

Немаловажным моментом в работе с регулятором РДУК является знание его основных неисправностей и способы их устранения. Существует порядка восьми видов неисправностей регулятора, и о них необходимо знать каждому, кто работает с подобными регуляторами, причем не только знать, но и суметь исправить.

Виды неисправностей и способы устранения:

  1. Пружина пилота полностью ослаблена, однако выходное давление достигает или превышает на 20 процентов рабочее давление: негерметичность регулируемого органа регулятора (пилота). Проводится осмотр уплотняющих поверхностей седла и клапана, при необходимости у клапана заменяют резиновую прокладку.
  2. Выходное давление падает до нуля: разрыв мембраны регулятора, мембрану необходимо заменить.
  3. Выходное давление непрерывно растет: разрыв мембраны пилота, засорение седла или заедание толкателя, золотника пилота в направляющих. Надо заменить мембрану, прочистить седло и устранить заедание толкателя.
  4. Выходное давление при настройке в пределах (0,2-0,6 кг/см²) сильно колеблется: следует установить дроссель на импульсной трубке от мембранной камеры регулятора к основному газопроводу, а при сохранении колебаний уменьшить чувствительность пилота, поставив более плотную (жесткую) пружину.
  5. Выходное давление сильно колеблется при небольших затратах газа, автономно от давления настройки. Причина может быть скрыта в довольно большой пропускной способности регулятора. Если устранение колебаний не достигается установкой дросселя, на импульсной трубке от мембранной камеры регулятора к основному газопроводу, то снижают входное давление, а при необходимости заменяют седло и клапан регулятора на меньшие размеры.
  6. Выходное давление постепенно уменьшается, временами резко возрастает и вновь снижается до нуля: обмерзание золотника и седла пилота, оно устраняется обогреванием пилота тряпкой, смоченной горячей водой.
  7. Выходное давление постепенно уменьшается и поджатие пружины пилота его не повышает: засорение фильтра или отверстия седла пилота, выпадение уплотняющей резинки золотника, поломка настроечной пружины пилота. Фильтр следует прочистить и продуть, резинку и пружину заменить новыми.
  8. Выходное давление изменяется одновременно с изменением входного давления: перепутаны места установки дросселя на импульсной трубке от мембранной камеры регулятора к основному газопроводу и дельфинирующего дросселя или дроссели вообще не установлены. Необходимо проверить установлены ли дроссели и правильно ли это сделано.

Все это необходимо постоянно помнить, иначе могут возникнуть серьезные проблемы с работой газового оборудования.

Предназначен для снижения входного давления газа и автоматического поддержания заданного давления на выходе, независимо от изменения расхода и входного давления

Регулятор давления газа РДУК2-200/140 (РДУК2-200/105) предназначен для редуцирования давления газа и автоматического поддержания выходного давления в заданных пределах независимо от изменения входного давления и расхода газ.

Регулятор РДУК2-200/140 (РДУК2-200/105) применяется в системах газоснабжения промышленных, сельскохозяйственных и коммунально-бытовых объектов.

Условия эксплуатации регулятора РДУК2-200/140 (РДУК2-200/105) должны соответствовать климатическому исполнению УЗ ГОСТ 15150.

Регулятор выпускается в четырех исполнениях:

РДУК2-200Н/105 с низким выходным давлением и диаметром седла 105 мм

РДУК2-200Н/140 с низким выходным давлением и диаметром седла 140 мм

РДУК2-200В/105 с высоким выходным давлением и диаметром седла 105 мм

РДУК2-200В/140 с высоким выходным давлением и диаметром седла 140 мм

Масса регуляторов РДУК2-200 составляет не более 300 кг.

Регулятор давления конструкции Казанцева (РДУК).

Регуляторы давления газа служат для понижения давления в системах газоснабжения до заданных норм и автоматического поддержания этого давления на заданном уровне.

Регуляторы давления состоят из:

— регулирующего клапана с мембранным приводом (исполнительный механизм);

— регулятор давления (пилот);

— дроссели и соединительные трубки.

Газ начального давления до поступления в регулятор управления проходит через фильтр, что улучшает условия работы пилота.

Мембрана регулятора по периферии зажата между корпусом и крышкой мембранной коробки, а в центре между плоским и чашеобразным дисками. Чашеобразный диск упирается в проточку крышки, что обеспечивает центрирование мембраны перед её зажимом.

Читать еще:  Правила установки газового счетчика в квартире

Середина гнезда тарелки мембраны упирается в толкатель, а на него давит шток, который свободно перемещается в колонне. На верхний конец штока свободно навешен золотник клапана. Плотное закрытие седла клапана обеспечивается за счёт массы золотника и давления газа на него.

Газ выходящий из пилота, по импульсной трубке поступает под мембрану регулятора и частично по трубке сбрасывается в газопровод. Для ограничения этого сброса в месте соединения трубки с газопроводом устанавливают дроссель диаметром 2 мм., за счёт чего достигается получение необходимого давления газа под мембраной регулятора при незначительном расходе газа через пилот.

Импульсная трубка соединяет надмембранную полость регулятора с выходным газопроводом. Надмембранная полость пилота также сообщается с выходным газопроводом через импульсную трубку.

Если давление газа по обе стороны мембраны одинаково, то клапан регулятора закрыт.

Клапан может быть открыт только в том случае, если давление газа под мембраной достаточно для преодоления давления газа на клапан сверху и преодоления силы тяжести мембранной подвески. Колебание газа после регулятора не должно превышать ±10%.

Регулятор давления работает следующим образом:

Газ начального давления из подкапанной камеры регулятора попадает в пилот. Пройдя клапан пилота, газ двигается по импульсной трубке, проходит через дроссель и поступает в газопровод после регулирующего клапана.

Клапан пилота дроссель и импульсные трубки представляют собой усилительное устройство дроссельного типа.

Импульс конечного давления воспринимаемый пилотом усиливается дроссельным устройством, трансформируется в командное давление и по трубке передаётся в подмембранное пространство исполнительного механизма, перемещая регулирующий клапан.

При уменьшении расхода газа давление после регулятора начинает возрастать.

Это передаётся по импульсной трубке на мембрану пилота, который опускается вниз, закрывая клапан пилота. В этом случае газ с высокой стороны по импульсной трубке не может пройти через пилот.

Поэтому давление газа под мембраной постепенно уменьшается. Когда давление под мембраной окажется меньше силы тяжести тарелки и давления, оказываемого клапаном регулятора, а также давления газа на клапан сверху, то мембрана пойдёт вниз, вытесняя газ из мембранной полости через импульсную трубку на сброс.

Клапан постепенно начинает закрываться, уменьшая отверстие для прохода газа. Давление после регулятора понизится до заданной величины.

При увеличении расхода газа давление после регулятора уменьшается.

Это передаётся по импульсной трубке на мембрану пилота, которая под действием пружины идёт вверх, открывая клапан пилота.

Газ с высокой стороны по импульсной трубке поступает на клапан пилота и затем по импульсной трубке идёт на мембрану регулятора.

Часть газа идёт на сброс по импульсной трубке, а часть на мембрану.

Давление газа под мембраной регулятора возрастает и, преодолевая массу мембранной подвески и давление газа на клапан, перемещает мембрану вверх.

Клапан регулятора при этом открывается, увеличивая отверстие для прохода газа. Давление газа после регулятора повышается до заданной величины.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Регулятор давления газа РДУК-200М

Технические характеристики РДУК-200М

Примечания. 1. Регуляторы РДУК-200М, в настоящее время не выпускаются. 2. Первая цифра после буквенного обозначения типа регулятора — диаметр присоединительного патрубка Ду, мм, вторая — диаметр седла клапана, мм.

Читать еще:  Сделать печь на отработке своими руками

Максимальная пропускная способность регуляторов РДУК2 приведена на рис. 1–3, где Р1, Р2 — соответственно входное и выходное давление, кг/см².

Устройство и принцип работы РДУК-200М

В схеме регулятора давления РДУК2 (см. рисунки 1, 2) регулятор управления КН2 является командным прибором, а регулирующий клапан — исполнительным механизмом. Работа регулятора давления осуществляется за счет энергии проходящей рабочей среды.

Газ входного давления, помимо основного клапана, поступает через фильтр на малый клапан регулятора управления и после него по соединительной трубке через демпфирующий дроссель — под мембрану регулирующего клапана. Газ сбрасывается в газопровод за регулятором давления через сбросной дроссель.

На мембраны регулирующего клапана и регулятора управления по соединительным трубкам подается выходное давление газа. Благодаря непрерывному потоку газа через сбросной дроссель давление перед ним и, следовательно, под мембраной регулирующего клапана всегда больше выходного давления.

Разность давлений по обе стороны мембраны регулирующего клапана образует подъемную силу мембраны, которая при любом установившемся режиме работы регулятора уравновешивается весом подвижных частей и действием входного давления на основной клапан.

Повышенное давление под мембраной регулирующего клапана автоматически регулируется малым клапаном регулятора управления, в зависимости от потребления газа и входного давления перед регулятором.

Усилие выходного давления на мембрану регулятора управления постоянно сравнивается с заданным при настройке усилием нижней пружины; любое незначительное отклонение выходного давления вызывает перемещение мембраны и клапана регулятора управления. При этом изменяется расход газа, проходящего через малый клапан, а следовательно, и давление под мембраной регулирующего клапана.

Таким образом, при любом отклонении выходного давления от заданного изменение давления под большой мембраной вызывает перемещение основного клапана в новое равновесное положение, при котором выходное давление восстанавливается. Например, если при уменьшении потребления газа выходное давление повысится, то мембрана и клапан регулятора управления несколько опустятся. При этом расход газа через малый клапан уменьшится, что вызовет уменьшение давления под мембраной регулирующего клапана. Основной клапан под действием входного давления начнет закрываться до тех пор, пока его проходное сечение не будет соответствовать новому потреблению газа и выходное давление не восстановится.

При работе ход мембраны и клапана регулятора управления, необходимый для полного хода основного клапана, весьма мал, и изменение усилий обеих пружин на этом малом ходу, а также действие меняющегося входного давления на малый клапан составляют незначительную часть от действия выходного давления на мембрану регулятора управления. Это означает, что регулятор при изменениях потребления газа и входного давления поддерживает выходное давление за счет незначительного отклонения от заданного. Практически эти отклонения составляют примерно 1–5 % от номинала.

Для преодоления определенного веса подвижных частей регулирующего клапана при его открытии и сопротивления малого клапана потоку газа необходим минимальный перепад давления 300 мм вод. ст.

Рисунок 1. Продольный разрез и схема присоединения регуляторов РДУК2-200 и РДУК-200М. (Регулятор управления и места присоединения импульсных трубок к мембранной камере условно повернуты на 90°)

Рисунок 2. График максимальной пропускной способности регуляторов РДУК2Н-200/105 и РДУК2В-200/105

Рисунок 3. График максимальной пропускной способности регуляторов РДУК2Н-200/140 и РДУК2В-200/140

Рисунок 4. Регулятор управления КН2

Регуляторы давления газа РДУК-200М , РДУК2Н(В)-50 , РДУК2Н(В)-100 , РДУК2Н(В)-200

Технические характеристики

Устройство и принцип работы

Примечания. 1. Регуляторы РДУК2Н(В) в настоящее время не выпускаются. 2. Первая цифра после буквенного обозначения типа регулятора — диаметр присоединительного патрубка Ду, мм, вторая — диаметр седла клапана, мм.

Читать еще:  Расчет теплопотерь через ограждающие конструкции

Максимальная пропускная способность регуляторов РДУК2 приведена на рис. 3–7, где Р1, Р2 — соответственно входное и выходное давление, кг/см².

В схеме регулятора давления РДУК2 (см. рисунки 1, 2) регулятор управления КН2 является командным прибором, а регулирующий клапан — исполнительным механизмом. Работа регулятора давления осуществляется за счет энергии проходящей рабочей среды.

Газ входного давления, помимо основного клапана, поступает через фильтр на малый клапан регулятора управления и после него по соединительной трубке через демпфирующий дроссель — под мембрану регулирующего клапана. Газ сбрасывается в газопровод за регулятором давления через сбросной дроссель.

На мембраны регулирующего клапана и регулятора управления по соединительным трубкам подается выходное давление газа. Благодаря непрерывному потоку газа через сбросной дроссель давление перед ним и, следовательно, под мембраной регулирующего клапана всегда больше выходного давления.

Разность давлений по обе стороны мембраны регулирующего клапана образует подъемную силу мембраны, которая при любом установившемся режиме работы регулятора уравновешивается весом подвижных частей и действием входного давления на основной клапан.

Повышенное давление под мембраной регулирующего клапана автоматически регулируется малым клапаном регулятора управления, в зависимости от потребления газа и входного давления перед регулятором.

Усилие выходного давления на мембрану регулятора управления постоянно сравнивается с заданным при настройке усилием нижней пружины; любое незначительное отклонение выходного давления вызывает перемещение мембраны и клапана регулятора управления. При этом изменяется расход газа, проходящего через малый клапан, а следовательно, и давление под мембраной регулирующего клапана.

Таким образом, при любом отклонении выходного давления от заданного изменение давления под большой мембраной вызывает перемещение основного клапана в новое равновесное положение, при котором выходное давление восстанавливается. Например, если при уменьшении потребления газа выходное давление повысится, то мембрана и клапан регулятора управления несколько опустятся. При этом расход газа через малый клапан уменьшится, что вызовет уменьшение давления под мембраной регулирующего клапана. Основной клапан под действием входного давления начнет закрываться до тех пор, пока его проходное сечение не будет соответствовать новому потреблению газа и выходное давление не восстановится.

При работе ход мембраны и клапана регулятора управления, необходимый для полного хода основного клапана, весьма мал, и изменение усилий обеих пружин на этом малом ходу, а также действие меняющегося входного давления на малый клапан составляют незначительную часть от действия выходного давления на мембрану регулятора управления. Это означает, что регулятор при изменениях потребления газа и входного давления поддерживает выходное давление за счет незначительного отклонения от заданного. Практически эти отклонения составляют примерно 1–5 % от номинала.

Для преодоления определенного веса подвижных частей регулирующего клапана при его открытии и сопротивления малого клапана потоку газа необходим минимальный перепад давления 300 мм вод. ст.

Рисунок 1. Продольный разрез и схема присоединения регулятора РДУК2-100. (Регулятор управления и места присоединения импульсных трубок к мембранной камере условно повернуты на 90°)

Рисунок 2. Продольный разрез и схема присоединения регуляторов РДУК2-200 и РДУК-200М. (Регулятор управления и места присоединения импульсных трубок к мембранной камере условно повернуты на 90°)

Рисунок 3. График максимальной пропускной способности регуляторов РДУК2Н-50/35 и РДУК2В-50/35

Рисунок 4. График максимальной пропускной способности регуляторов РДУК2Н-100/50 и РДУК2В-100/50

Рисунок 5. График максимальной пропускной способности регуляторов РДУК2Н-100/70 и РДУК2В-100/70

Рисунок 6. График максимальной пропускной способности регуляторов РДУК2Н-200/105 и РДУК2В-200/105

Рисунок 7. График максимальной пропускной способности регуляторов РДУК2Н-200/140 и РДУК2В-200/140

Рисунок 8. Регулятор управления КН2

Ссылка на основную публикацию
Adblock
detector